These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33593562)

  • 1. Symmetry breakdown in the sol-gel transition of a Guar gum transient physical network.
    Zammali M; Liu S; Yu W
    Carbohydr Polym; 2021 Apr; 258():117689. PubMed ID: 33593562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characterization of network formation during heat-induced gelation of whey protein dispersions.
    Ikeda S; Nishinari K; Foegeding EA
    Biopolymers; 2000-2001; 56(2):109-19. PubMed ID: 11592057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive microrheology of solvent-induced fibrillar protein networks.
    Corrigan AM; Donald AM
    Langmuir; 2009 Aug; 25(15):8599-605. PubMed ID: 19344157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the scaling law on cellulose solution prepared at low temperature.
    Lue A; Zhang L
    J Phys Chem B; 2008 Apr; 112(15):4488-95. PubMed ID: 18366208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microrheology and microstructure of Fmoc-derivative hydrogels.
    Aufderhorst-Roberts A; Frith WJ; Kirkland M; Donald AM
    Langmuir; 2014 Apr; 30(15):4483-92. PubMed ID: 24684622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equivalent pathways in melting and gelation of well-defined biopolymer networks.
    Cingil HE; Rombouts WH; van der Gucht J; Cohen Stuart MA; Sprakel J
    Biomacromolecules; 2015 Jan; 16(1):304-10. PubMed ID: 25397912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microrheology of the liquid-solid transition during gelation.
    Larsen TH; Furst EM
    Phys Rev Lett; 2008 Apr; 100(14):146001. PubMed ID: 18518051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static and dynamic heterogeneities in a model for irreversible gelation.
    Abete T; de Candia A; Del Gado E; Fierro A; Coniglio A
    Phys Rev Lett; 2007 Feb; 98(8):088301. PubMed ID: 17359133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the scaling law on gelation of oppositely charged nanocrystalline cellulose and polyelectrolyte.
    Lu A; Wang Y; Boluk Y
    Carbohydr Polym; 2014 May; 105():214-21. PubMed ID: 24708972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic viscoelastic properties of silica alkoxide during the sol-gel transition.
    Warlus S; Ponton A; Leslous A
    Eur Phys J E Soft Matter; 2003 Oct; 12(2):275-282. PubMed ID: 15007663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple phase transition and scaling law for poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution.
    Liu S; Li L
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2688-97. PubMed ID: 25564943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonionic gelation agents prepared from hydroxypropyl guar gum.
    Kono H; Hara H; Hashimoto H; Shimizu Y
    Carbohydr Polym; 2015 Mar; 117():636-643. PubMed ID: 25498682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Access to Guar Gum Based Supramolecular Hydrogels with Rapid Self-Healing Ability and Multistimuli Responsive Gel-Sol Transitions.
    Li N; Liu C; Chen W
    J Agric Food Chem; 2019 Jan; 67(2):746-752. PubMed ID: 30571099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal sol state behavior and gelation kinetics in mixed clay dispersions.
    Pujala RK; Pawar N; Bohidar HB
    Langmuir; 2011 May; 27(9):5193-203. PubMed ID: 21466239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling law and microstructure of alginate hydrogel.
    Liu S; Li H; Tang B; Bi S; Li L
    Carbohydr Polym; 2016 Jan; 135():101-9. PubMed ID: 26453857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of sol-to-gel transition in irreversible particulate systems.
    Liu P; Heinson WR; Sorensen CM; Chakrabarty RK
    J Colloid Interface Sci; 2019 Aug; 550():57-63. PubMed ID: 31051341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, microrheological and kinetic properties of a ternary silica-Pluronic F127-starch thermosensitive system.
    Petkova-Olsson Y; Oelschlaeger C; Ullsten H; Järnström L
    J Colloid Interface Sci; 2018 Mar; 514():459-467. PubMed ID: 29289030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Analysis of Critical Flowable Physical Gel Cross-Linked by Metal Ions and Polyacrylamide-Derivative Associating Polymers Containing Imidazole Groups.
    Ozaki H; Narita T; Koga T; Indei T
    Polymers (Basel); 2017 Jun; 9(7):. PubMed ID: 30970931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical-Like Gelation Dynamics in Cellulose Nanocrystal Suspensions.
    Morlet-Decarnin L; Divoux T; Manneville S
    ACS Macro Lett; 2023 Dec; 12(12):1733-1738. PubMed ID: 38064662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical heterogeneity in the gelation process of a polymer solution with a lower critical solution temperature.
    Dai Y; Zhang R; Sun W; Wang T; Chen Y; Tong Z
    Soft Matter; 2021 Mar; 17(11):3222-3233. PubMed ID: 33624665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.