These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 33593730)
1. MRI Compatible, Customizable, and 3D-Printable Microdrive for Neuroscience Research. Baeg E; Doudlah R; Swader R; Lee H; Han M; Kim SG; Rosenberg A; Kim B eNeuro; 2021; 8(2):. PubMed ID: 33593730 [TBL] [Abstract][Full Text] [Related]
2. TetrODrive: an open-source microdrive for combined electrophysiology and optophysiology. Brosch M; Vlasenko A; Ohl FW; Lippert MT J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33908896 [No Abstract] [Full Text] [Related]
3. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice. Osanai H; Kitamura T; Yamamoto J J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259 [TBL] [Abstract][Full Text] [Related]
4. Reimplantable Microdrive for Long-Term Chronic Extracellular Recordings in Freely Moving Rats. Polo-Castillo LE; Villavicencio M; Ramírez-Lugo L; Illescas-Huerta E; Moreno MG; Ruiz-Huerta L; Gutierrez R; Sotres-Bayon F; Caballero-Ruiz A Front Neurosci; 2019; 13():128. PubMed ID: 30846926 [TBL] [Abstract][Full Text] [Related]
5. A frameless stereotaxic MRI technique for macaque neuroscience studies. Dubowitz DJ; Scadeng M Open Neuroimag J; 2011; 5():198-205. PubMed ID: 22253662 [TBL] [Abstract][Full Text] [Related]
6. The systemDrive: a Multisite, Multiregion Microdrive with Independent Drive Axis Angling for Chronic Multimodal Systems Neuroscience Recordings in Freely Behaving Animals. Billard MW; Bahari F; Kimbugwe J; Alloway KD; Gluckman BJ eNeuro; 2018; 5(6):. PubMed ID: 30627656 [TBL] [Abstract][Full Text] [Related]
7. Using camera-guided electrode microdrive navigation for precise 3D targeting of macaque brain sites. Crayen MA; Kagan I; Esghaei M; Hoehl D; Thomas U; Prückl R; Schaffelhofer S; Treue S PLoS One; 2024; 19(5):e0301849. PubMed ID: 38805512 [TBL] [Abstract][Full Text] [Related]
8. Robotic multi-probe single-actuator inchworm neural microdrive. Smith RD; Kolb I; Tanaka S; Lee AK; Harris TD; Barbic M Elife; 2022 Nov; 11():. PubMed ID: 36355598 [TBL] [Abstract][Full Text] [Related]
9. An open-source MRI compatible frame for multimodal presurgical mapping in macaque and capuchin monkeys. Liang L; Zimmermann Rollin I; Alikaya A; Ho JC; Santini T; Bostan AC; Schwerdt HN; Stauffer WR; Ibrahim TS; Pirondini E; Schaeffer DJ J Neurosci Methods; 2024 Jul; 407():110133. PubMed ID: 38588922 [TBL] [Abstract][Full Text] [Related]
10. A Large-Scale Semi-Chronic Microdrive Recording System for Non-Human Primates. Dotson NM; Hoffman SJ; Goodell B; Gray CM Neuron; 2017 Nov; 96(4):769-782.e2. PubMed ID: 29107523 [TBL] [Abstract][Full Text] [Related]
11. Miniature microdrive for extracellular recording of neuronal activity in freely moving animals. Korshunov VA J Neurosci Methods; 1995 Mar; 57(1):77-80. PubMed ID: 7791367 [TBL] [Abstract][Full Text] [Related]
12. Miniature microdrive-headstage assembly for extracellular recording of neuronal activity with high-impedance electrodes in freely moving mice. Korshunov VA J Neurosci Methods; 2006 Dec; 158(2):179-85. PubMed ID: 16828875 [TBL] [Abstract][Full Text] [Related]
13. Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice. Yang S; Cho J; Lee S; Park K; Kim J; Huh Y; Yoon ES; Shin HS J Neurosci Methods; 2011 Feb; 195(2):117-27. PubMed ID: 20868709 [TBL] [Abstract][Full Text] [Related]
14. Piezo motor based microdrive for neural signal recording. Yang S; Lee S; Park K; Jeon H; Huh Y; Cho J; Shin HS; Yoon ES Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3364-7. PubMed ID: 19163430 [TBL] [Abstract][Full Text] [Related]
15. 3D printed guide tube system for acute Neuropixels probe recordings in non-human primates. Bauer DL; Pobiel B; Hilber K; Verma AK; Wang J; Vitek J; Johnson M; Johnson L J Neural Eng; 2023 May; 20(3):. PubMed ID: 37105161 [No Abstract] [Full Text] [Related]
16. Optical imaging combined with targeted electrical recordings, microstimulation, or tracer injections. Arieli A; Grinvald A J Neurosci Methods; 2002 Apr; 116(1):15-28. PubMed ID: 12007980 [TBL] [Abstract][Full Text] [Related]
17. An intra-neural microstimulation system for ultra-high field magnetic resonance imaging and magnetoencephalography. Glover PM; Watkins RH; O'Neill GC; Ackerley R; Sanchez-Panchuelo R; McGlone F; Brookes MJ; Wessberg J; Francis ST J Neurosci Methods; 2017 Oct; 290():69-78. PubMed ID: 28743633 [TBL] [Abstract][Full Text] [Related]
18. Minimizing magnetic resonance image geometric distortion at 7 Tesla for frameless presurgical planning using skin-adhered fiducials. Kirby KM; Koons EK; Welker KM; Fagan AJ Med Phys; 2023 Feb; 50(2):694-701. PubMed ID: 36301228 [TBL] [Abstract][Full Text] [Related]
19. 3D-printed Recoverable Microdrive and Base Plate System for Rodent Electrophysiology. Vöröslakos M; Miyawaki H; Royer S; Diba K; Yoon E; Petersen PC; Buzsáki G Bio Protoc; 2021 Aug; 11(16):e4137. PubMed ID: 34541053 [TBL] [Abstract][Full Text] [Related]
20. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]