These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33593910)

  • 1. Influenza hemagglutinin-specific IgA Fc-effector functionality is restricted to stalk epitopes.
    Freyn AW; Han J; Guthmiller JJ; Bailey MJ; Neu K; Turner HL; Rosado VC; Chromikova V; Huang M; Strohmeier S; Liu STH; Simon V; Krammer F; Ward AB; Palese P; Wilson PC; Nachbagauer R
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadly Neutralizing Hemagglutinin Stalk-Specific Antibodies Induce Potent Phagocytosis of Immune Complexes by Neutrophils in an Fc-Dependent Manner.
    Mullarkey CE; Bailey MJ; Golubeva DA; Tan GS; Nachbagauer R; He W; Novakowski KE; Bowdish DM; Miller MS; Palese P
    mBio; 2016 Oct; 7(5):. PubMed ID: 27703076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influenza Virus Hemagglutinin Stalk-Specific Antibodies in Human Serum are a Surrogate Marker for
    Jacobsen H; Rajendran M; Choi A; Sjursen H; Brokstad KA; Cox RJ; Palese P; Krammer F; Nachbagauer R
    mBio; 2017 Sep; 8(5):. PubMed ID: 28928215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the Hemagglutinin Stalk Domain Do Not Permit Escape from a Protective, Stalk-Based Vaccine-Induced Immune Response in the Mouse Model.
    Roubidoux EK; Carreño JM; McMahon M; Jiang K; van Bakel H; Wilson P; Krammer F
    mBio; 2021 Feb; 12(1):. PubMed ID: 33593972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadly neutralizing anti-influenza virus antibodies: enhancement of neutralizing potency in polyclonal mixtures and IgA backbones.
    He W; Mullarkey CE; Duty JA; Moran TM; Palese P; Miller MS
    J Virol; 2015 Apr; 89(7):3610-8. PubMed ID: 25589655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus.
    He W; Tan GS; Mullarkey CE; Lee AJ; Lam MM; Krammer F; Henry C; Wilson PC; Ashkar AA; Palese P; Miller MS
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11931-11936. PubMed ID: 27698132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Globular Head-Displayed Conserved Influenza H1 Hemagglutinin Stalk Epitopes Confer Protection against Heterologous H1N1 Virus.
    Klausberger M; Tscheliessnig R; Neff S; Nachbagauer R; Wohlbold TJ; Wilde M; Palmberger D; Krammer F; Jungbauer A; Grabherr R
    PLoS One; 2016; 11(4):e0153579. PubMed ID: 27088239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An influenza HA stalk reactive polymeric IgA antibody exhibits anti-viral function regulated by binary interaction between HA and the antibody.
    Sano K; Saito S; Suzuki T; Kotani O; Ainai A; van Riet E; Tabata K; Saito K; Takahashi Y; Yokoyama M; Sato H; Maruno T; Usami K; Uchiyama S; Ogawa-Goto K; Hasegawa H
    PLoS One; 2021; 16(1):e0245244. PubMed ID: 33412571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intranasal vaccination of recombinant H5N1 HA1 proteins fused with foldon and Fc induces strong mucosal immune responses with neutralizing activity: Implication for developing novel mucosal influenza vaccines.
    Yu F; Li Y; Guo Y; Wang L; Yang J; Zhao G; Zhou Y; Du L; Jiang S
    Hum Vaccin Immunother; 2015; 11(12):2831-8. PubMed ID: 26260706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of broadly reactive anti-hemagglutinin stalk antibodies by an H5N1 vaccine in humans.
    Nachbagauer R; Wohlbold TJ; Hirsh A; Hai R; Sjursen H; Palese P; Cox RJ; Krammer F
    J Virol; 2014 Nov; 88(22):13260-8. PubMed ID: 25210189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Role of Nonneutralizing IgA Antibodies in Cross-Protective Immunity against Influenza A Viruses of Multiple Hemagglutinin Subtypes.
    Okuya K; Yoshida R; Manzoor R; Saito S; Suzuki T; Sasaki M; Saito T; Kida Y; Mori-Kajihara A; Kondoh T; Sato M; Kajihara M; Miyamoto H; Ichii O; Higashi H; Takada A
    J Virol; 2020 Jun; 94(12):. PubMed ID: 32269119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of pre-existing immunity on the induction of functional cross-reactive anti-hemagglutinin stalk antibodies following vaccination with an AS03 adjuvanted pandemic H1N1 vaccine.
    Tete SM; Jul-Larsen Å; Rostami S; Lunde THF; Søland H; Krammer F; Cox RJ
    Vaccine; 2018 Apr; 36(16):2213-2219. PubMed ID: 29548607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo.
    DiLillo DJ; Tan GS; Palese P; Ravetch JV
    Nat Med; 2014 Feb; 20(2):143-51. PubMed ID: 24412922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of a Novel H3-Specific Broadly Neutralizing Monoclonal Antibody Targeting the Hemagglutinin Globular Head Isolated from an Elite Influenza Virus-Immunized Donor Exhibiting Serological Breadth.
    Qiu Y; Stegalkina S; Zhang J; Boudanova E; Park A; Zhou Y; Prabakaran P; Pougatcheva S; Ustyugova IV; Vogel TU; Mundle ST; Oomen R; Delagrave S; Ross TM; Kleanthous H; Qiu H
    J Virol; 2020 Feb; 94(6):. PubMed ID: 31826999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets.
    Krammer F; Hai R; Yondola M; Tan GS; Leyva-Grado VH; Ryder AB; Miller MS; Rose JK; Palese P; García-Sastre A; Albrecht RA
    J Virol; 2014 Mar; 88(6):3432-42. PubMed ID: 24403585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemagglutinin stalk-binding antibodies enhance effectiveness of neuraminidase inhibitors against influenza via Fc-dependent effector functions.
    Zhang A; Chaudhari H; Agung Y; D'Agostino MR; Ang JC; Tugg Y; Miller MS
    Cell Rep Med; 2022 Aug; 3(8):100718. PubMed ID: 35977467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogenesis of influenza a virus hemagglutinin cross-protective stem epitopes.
    Magadán JG; Altman MO; Ince WL; Hickman HD; Stevens J; Chevalier A; Baker D; Wilson PC; Ahmed R; Bennink JR; Yewdell JW
    PLoS Pathog; 2014 Jun; 10(6):e1004204. PubMed ID: 24945804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of H7N9 hemagglutinin novel protein epitopes that elicit strong antibody-dependent, cell-mediated cytotoxic activities with protection from influenza infection in mouse model.
    Zhu P; Yi X; Zhang L; Liu Y; Wang S; Gu J; Zhu X; Yu X
    Cell Immunol; 2021 Jan; 359():104255. PubMed ID: 33316647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An immuno-assay to quantify influenza virus hemagglutinin with correctly folded stalk domains in vaccine preparations.
    Rajendran M; Sun W; Comella P; Nachbagauer R; Wohlbold TJ; Amanat F; Kirkpatrick E; Palese P; Krammer F
    PLoS One; 2018; 13(4):e0194830. PubMed ID: 29617394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of adjuvants on the amount, specificity and functional activity of antibody response to human influenza vaccine in mice.
    Voutssas-Lara J; Cervantes-Torres J; Hernández M; Bobes RJ; Lamoyi E; Vázquez-Ramírez RA; Mendoza L; Reyes-Barrera KL; López-Martínez R; Alpuche-Solís ÁG; Rosales-Mendoza S; Huerta L; Fragoso G; Sciutto E
    Mol Immunol; 2021 Jul; 135():398-407. PubMed ID: 34022515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.