BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33594044)

  • 21. Protective effects of diphenyleneiodonium, an NADPH oxidase inhibitor, on lipopolysaccharide-induced acute lung injury.
    Kim SK; Rho SJ; Kim SH; Kim SY; Song SH; Yoo JY; Kim CH; Lee SH
    Clin Exp Pharmacol Physiol; 2019 Feb; 46(2):153-162. PubMed ID: 30403294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ras inhibitors display an anti-metastatic effect by downregulation of lysyl oxidase through inhibition of the Ras-PI3K-Akt-HIF-1α pathway.
    Yoshikawa Y; Takano O; Kato I; Takahashi Y; Shima F; Kataoka T
    Cancer Lett; 2017 Dec; 410():82-91. PubMed ID: 28951129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts.
    Rajeshkumar NV; De Oliveira E; Ottenhof N; Watters J; Brooks D; Demuth T; Shumway SD; Mizuarai S; Hirai H; Maitra A; Hidalgo M
    Clin Cancer Res; 2011 May; 17(9):2799-806. PubMed ID: 21389100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rottlerin suppresses growth of human pancreatic tumors in nude mice, and pancreatic cancer cells isolated from Kras(G12D) mice.
    Huang M; Tang SN; Upadhyay G; Marsh JL; Jackman CP; Srivastava RK; Shankar S
    Cancer Lett; 2014 Oct; 353(1):32-40. PubMed ID: 25050737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TLR-4 signalling accelerates colon cancer cell adhesion via NF-κB mediated transcriptional up-regulation of Nox-1.
    O'Leary DP; Bhatt L; Woolley JF; Gough DR; Wang JH; Cotter TG; Redmond HP
    PLoS One; 2012; 7(10):e44176. PubMed ID: 23071493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function.
    Viale A; Pettazzoni P; Lyssiotis CA; Ying H; Sánchez N; Marchesini M; Carugo A; Green T; Seth S; Giuliani V; Kost-Alimova M; Muller F; Colla S; Nezi L; Genovese G; Deem AK; Kapoor A; Yao W; Brunetto E; Kang Y; Yuan M; Asara JM; Wang YA; Heffernan TP; Kimmelman AC; Wang H; Fleming JB; Cantley LC; DePinho RA; Draetta GF
    Nature; 2014 Oct; 514(7524):628-32. PubMed ID: 25119024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AGR2-Dependent Nuclear Import of RNA Polymerase II Constitutes a Specific Target of Pancreatic Ductal Adenocarcinoma in the Context of Wild-Type p53.
    Zhang Z; Li H; Deng Y; Schuck K; Raulefs S; Maeritz N; Yu Y; Hechler T; Pahl A; Fernández-Sáiz V; Wan Y; Wang G; Engleitner T; Öllinger R; Rad R; Reichert M; Diakopoulos KN; Weber V; Li J; Shen S; Zou X; Kleeff J; Mihaljevic A; Michalski CW; Algül H; Friess H; Kong B
    Gastroenterology; 2021 Nov; 161(5):1601-1614.e23. PubMed ID: 34303658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism.
    Patra KC; Kato Y; Mizukami Y; Widholz S; Boukhali M; Revenco I; Grossman EA; Ji F; Sadreyev RI; Liss AS; Screaton RA; Sakamoto K; Ryan DP; Mino-Kenudson M; Castillo CF; Nomura DK; Haas W; Bardeesy N
    Nat Cell Biol; 2018 Jul; 20(7):811-822. PubMed ID: 29941929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Desmoplasia suppression by metformin-mediated AMPK activation inhibits pancreatic cancer progression.
    Duan W; Chen K; Jiang Z; Chen X; Sun L; Li J; Lei J; Xu Q; Ma J; Li X; Han L; Wang Z; Wu Z; Wang F; Wu E; Ma Q; Ma Z
    Cancer Lett; 2017 Jan; 385():225-233. PubMed ID: 27773749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutant Kras- and p16-regulated NOX4 activation overcomes metabolic checkpoints in development of pancreatic ductal adenocarcinoma.
    Ju HQ; Ying H; Tian T; Ling J; Fu J; Lu Y; Wu M; Yang L; Achreja A; Chen G; Zhuang Z; Wang H; Nagrath D; Yao J; Hung MC; DePinho RA; Huang P; Xu RH; Chiao PJ
    Nat Commun; 2017 Feb; 8():14437. PubMed ID: 28232723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of potent and selective iodonium-class inhibitors of NADPH oxidases.
    Lu J; Risbood P; Kane CT; Hossain MT; Anderson L; Hill K; Monks A; Wu Y; Antony S; Juhasz A; Liu H; Jiang G; Harris E; Roy K; Meitzler JL; Konaté M; Doroshow JH
    Biochem Pharmacol; 2017 Nov; 143():25-38. PubMed ID: 28709950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of the Nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer.
    Ju HQ; Zhuang ZN; Li H; Tian T; Lu YX; Fan XQ; Zhou HJ; Mo HY; Sheng H; Chiao PJ; Xu RH
    Cancer Lett; 2016 Aug; 379(1):1-11. PubMed ID: 27233476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling targeted inhibition of MEK and PI3 kinase in human pancreatic cancer.
    Junttila MR; Devasthali V; Cheng JH; Castillo J; Metcalfe C; Clermont AC; Otter DD; Chan E; Bou-Reslan H; Cao T; Forrest W; Nannini MA; French D; Carano R; Merchant M; Hoeflich KP; Singh M
    Mol Cancer Ther; 2015 Jan; 14(1):40-7. PubMed ID: 25376606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Paraoxonase 2 Facilitates Pancreatic Cancer Growth and Metastasis by Stimulating GLUT1-Mediated Glucose Transport.
    Nagarajan A; Dogra SK; Sun L; Gandotra N; Ho T; Cai G; Cline G; Kumar P; Cowles RA; Wajapeyee N
    Mol Cell; 2017 Aug; 67(4):685-701.e6. PubMed ID: 28803777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracellular KRAS-specific antibody enhances the anti-tumor efficacy of gemcitabine in pancreatic cancer by inducing endosomal escape.
    Lee JE; Kang YW; Jung KH; Son MK; Shin SM; Kim JS; Kim SJ; Fang Z; Yan HH; Park JH; Yoon YC; Han B; Cheon MJ; Woo MG; Seo MS; Lim JH; Kim YS; Hong SS
    Cancer Lett; 2021 Jun; 507():97-111. PubMed ID: 33744388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antiproliferative mechanisms of action of the flavin dehydrogenase inhibitors diphenylene iodonium and di-2-thienyliodonium based on molecular profiling of the NCI-60 human tumor cell panel.
    Doroshow JH; Juhasz A; Ge Y; Holbeck S; Lu J; Antony S; Wu Y; Jiang G; Roy K
    Biochem Pharmacol; 2012 May; 83(9):1195-207. PubMed ID: 22305747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NADPH oxidase inhibition rescues keratinocytes from elevated oxidative stress in a 2D atopic dermatitis and psoriasis model.
    Emmert H; Fonfara M; Rodriguez E; Weidinger S
    Exp Dermatol; 2020 Aug; 29(8):749-758. PubMed ID: 32640089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. KRAS-related proteins in pancreatic cancer.
    Mann KM; Ying H; Juan J; Jenkins NA; Copeland NG
    Pharmacol Ther; 2016 Dec; 168():29-42. PubMed ID: 27595930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16.
    Chalabi-Dchar M; Cassant-Sourdy S; Duluc C; Fanjul M; Lulka H; Samain R; Roche C; Breibach F; Delisle MB; Poupot M; Dufresne M; Shimaoka T; Yonehara S; Mathonnet M; Pyronnet S; Bousquet C
    Gastroenterology; 2015 Jun; 148(7):1452-65. PubMed ID: 25683115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Susceptibility of human head and neck cancer cells to combined inhibition of glutathione and thioredoxin metabolism.
    Sobhakumari A; Love-Homan L; Fletcher EV; Martin SM; Parsons AD; Spitz DR; Knudson CM; Simons AL
    PLoS One; 2012; 7(10):e48175. PubMed ID: 23118946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.