These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 33594146)

  • 41. Secondary imbibition in NAPL-invaded mixed-wet sediments.
    Al-Futaisi A; Patzek TW
    J Contam Hydrol; 2004 Oct; 74(1-4):61-81. PubMed ID: 15358487
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Breakthrough pressure of oil displacement by water through the ultra-narrow kerogen pore throat from the Young-Laplace equation and molecular dynamic simulations.
    Zhao Y; Li W; Zhan S; Jin Z
    Phys Chem Chem Phys; 2022 Jul; 24(28):17195-17209. PubMed ID: 35792334
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stability of a fluid-fluid interface in a biconical pore segment.
    Hilpert M; Miller CT; Gray WG
    J Colloid Interface Sci; 2003 Nov; 267(2):397-407. PubMed ID: 14583218
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of shear-thinning fluids on residual oil formation in microfluidic pore networks.
    Rodríguez de Castro A; Oostrom M; Shokri N
    J Colloid Interface Sci; 2016 Jun; 472():34-43. PubMed ID: 26998787
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions.
    Rabbani HS; Joekar-Niasar V; Pak T; Shokri N
    Sci Rep; 2017 Jul; 7(1):4584. PubMed ID: 28676665
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Capillary and viscous fracturing during drainage in porous media.
    Carrillo FJ; Bourg IC
    Phys Rev E; 2021 Jun; 103(6-1):063106. PubMed ID: 34271761
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pore-scale network model for three-phase flow in mixed-wet porous media.
    van Dijke MI; Sorbie KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046302. PubMed ID: 12443317
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Triggering interfacial instabilities during forced imbibition by adjusting the aspect ratio in depth-variable microfluidic porous media.
    Lei W; Lu X; Gong W; Wang M
    Proc Natl Acad Sci U S A; 2023 Dec; 120(50):e2310584120. PubMed ID: 38048464
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Linking drainage front morphology with gaseous diffusion in unsaturated porous media: a lattice Boltzmann study.
    Chau JF; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056304. PubMed ID: 17279990
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insights into the Microscopic Oil-Water Flow Characteristics and Displacement Mechanisms during Waterflooding in Sandstone Reservoir Rock Based on Micro-CT Technology: A Pore-Scale Numerical Simulation Study.
    Hu B; Chai G; Liu X; Wen X; Gu Z; Xie L; Han S; Su J
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176437
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design, Fabrication, and Experimental Validation of Microfluidic Devices for the Investigation of Pore-Scale Phenomena in Underground Gas Storage Systems.
    Massimiani A; Panini F; Marasso SL; Vasile N; Quaglio M; Coti C; Barbieri D; Verga F; Pirri CF; Viberti D
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838008
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phase-field modeling of an immiscible liquid-liquid displacement in a capillary.
    Prokopev S; Vorobev A; Lyubimova T
    Phys Rev E; 2019 Mar; 99(3-1):033113. PubMed ID: 30999476
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flux-dependent percolation transition in immiscible two-phase flows in porous media.
    Ramstad T; Hansen A; Oren PE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036310. PubMed ID: 19392052
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Author Correction: Pore-scale effects during the transition from capillary to viscosity-dominated flow dynamics within microfluidic porous-like domains.
    Yiotis A; Karadimitriou NK; Zarikos I; Steeb H
    Sci Rep; 2021 Oct; 11(1):21445. PubMed ID: 34707205
    [No Abstract]   [Full Text] [Related]  

  • 56. Inertia Controlled Capillary Pressure at the Juncture between Converging and Uniform Channels.
    Rabbani HS; Seers TD
    Sci Rep; 2019 Sep; 9(1):13870. PubMed ID: 31554836
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Asymmetric invasion in anisotropic porous media.
    Maggiolo D; Picano F; Toschi F
    Phys Rev E; 2021 Oct; 104(4-2):045103. PubMed ID: 34781525
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of intermediate wettability on entry capillary pressure in angular pores.
    Rabbani HS; Joekar-Niasar V; Shokri N
    J Colloid Interface Sci; 2016 Jul; 473():34-43. PubMed ID: 27042823
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Suppressing Viscous Fingering in Porous Media with Wetting Gradient.
    Wang X; Yin C; Wang J; Zheng K; Zhang Z; Tian Z; Xiong Y
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048895
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Linking continuum-scale state of wetting to pore-scale contact angles in porous media.
    Sun C; McClure JE; Mostaghimi P; Herring AL; Shabaninejad M; Berg S; Armstrong RT
    J Colloid Interface Sci; 2020 Mar; 561():173-180. PubMed ID: 31812863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.