BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 33594888)

  • 1. Comparing the Ion-Conducting Polymers with Sulfonate and Ether Moieties as Cathode Binders for High-Power Lithium-Ion Batteries.
    Tsao CH; Yang TK; Chen KY; Fang CE; Ueda M; Richter FH; Janek J; Chiu CC; Kuo PL
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9846-9855. PubMed ID: 33594888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Effects of Li
    Wang PY; Chiu TH; Chiu CC
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries.
    Qiu L; Shao Z; Wang D; Wang F; Wang W; Wang J
    Carbohydr Polym; 2014 Nov; 112():532-8. PubMed ID: 25129778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.
    Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J
    Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Effective Binders for LiFePO
    Huang S; Huang X; Huang Y; He X; Zhuo H; Chen S
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium sulfonate-grafted poly(vinylidenefluoride-hexafluoro propylene) ionomer as binder for lithium-ion batteries.
    Wang Z; Tian S; Li S; Li L; Yin Y; Ma Z
    RSC Adv; 2018 May; 8(36):20025-20031. PubMed ID: 35541664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries.
    He Q; Ning J; Chen H; Jiang Z; Wang J; Chen D; Zhao C; Liu Z; Perepichka IF; Meng H; Huang W
    Chem Soc Rev; 2024 Jul; 53(13):7091-7157. PubMed ID: 38845536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De-agglomeration of cathode composites for direct recycling of Li-ion batteries.
    Zhan R; Payne T; Leftwich T; Perrine K; Pan L
    Waste Manag; 2020 Mar; 105():39-48. PubMed ID: 32018141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel-Salen-Type Polymer as Conducting Agent and Binder for Carbon-Free Cathodes in Lithium-Ion Batteries.
    O'Meara C; Karushev MP; Polozhentceva IA; Dharmasena S; Cho H; Yurkovich BJ; Kogan S; Kim JH
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):525-533. PubMed ID: 30540164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of LiFePO
    Chen X; Li S; Wang Y; Jiang Y; Tan X; Han W; Wang S
    Waste Manag; 2021 Dec; 136():67-75. PubMed ID: 34637980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium Borate Containing Bifunctional Binder To Address Both Ion Transporting and Polysulfide Trapping for High-Performance Li-S Batteries.
    Zhong L; Mo Y; Deng K; Wang S; Han D; Ren S; Xiao M; Meng Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28968-28977. PubMed ID: 31334632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.
    Shi Y; Zhou X; Yu G
    Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries.
    Prasanna K; Subburaj T; Jo YN; Lee WJ; Lee CW
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7884-90. PubMed ID: 25822540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric Binder Design for Sustainable Lithium-Ion Battery Chemistry.
    Yoon J; Lee J; Kim H; Kim J; Jin HJ
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining ReaxFF Simulations and Experiments to Evaluate the Structure-Property Characteristics of Polymeric Binders in Si-Based Li-Ion Batteries.
    Bhati M; Nguyen QA; Biswal SL; Senftle TP
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41956-41967. PubMed ID: 34432417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfated Alginate as an Effective Polymer Binder for High-Voltage LiNi
    Oishi A; Tatara R; Togo E; Inoue H; Yasuno S; Komaba S
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51808-51818. PubMed ID: 36351777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic investigation of polymer binder flexibility on the electrode performance of lithium-ion batteries.
    Yuca N; Zhao H; Song X; Dogdu MF; Yuan W; Fu Y; Battaglia VS; Xiao X; Liu G
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17111-8. PubMed ID: 25203598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery and Reuse of Composite Cathode Binder in Lithium Ion Batteries.
    Sarkar A; May R; Ramesh S; Chang W; Marbella LE
    ChemistryOpen; 2021 May; 10(5):545-552. PubMed ID: 33945235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile Composite Binder with Fast Lithium-Ion Transport for LiCoO
    Ye W; He W; Long J; Chen P; Ding B; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17401-17410. PubMed ID: 38537112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.