These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 33594888)
1. Comparing the Ion-Conducting Polymers with Sulfonate and Ether Moieties as Cathode Binders for High-Power Lithium-Ion Batteries. Tsao CH; Yang TK; Chen KY; Fang CE; Ueda M; Richter FH; Janek J; Chiu CC; Kuo PL ACS Appl Mater Interfaces; 2021 Mar; 13(8):9846-9855. PubMed ID: 33594888 [TBL] [Abstract][Full Text] [Related]
2. Molecular Effects of Li Wang PY; Chiu TH; Chiu CC Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337208 [TBL] [Abstract][Full Text] [Related]
3. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries. Qiu L; Shao Z; Wang D; Wang F; Wang W; Wang J Carbohydr Polym; 2014 Nov; 112():532-8. PubMed ID: 25129778 [TBL] [Abstract][Full Text] [Related]
4. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391 [TBL] [Abstract][Full Text] [Related]
5. Rational Design of Effective Binders for LiFePO Huang S; Huang X; Huang Y; He X; Zhuo H; Chen S Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578047 [TBL] [Abstract][Full Text] [Related]
6. Lithium sulfonate-grafted poly(vinylidenefluoride-hexafluoro propylene) ionomer as binder for lithium-ion batteries. Wang Z; Tian S; Li S; Li L; Yin Y; Ma Z RSC Adv; 2018 May; 8(36):20025-20031. PubMed ID: 35541664 [TBL] [Abstract][Full Text] [Related]
7. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries. He Q; Ning J; Chen H; Jiang Z; Wang J; Chen D; Zhao C; Liu Z; Perepichka IF; Meng H; Huang W Chem Soc Rev; 2024 Jul; 53(13):7091-7157. PubMed ID: 38845536 [TBL] [Abstract][Full Text] [Related]
8. De-agglomeration of cathode composites for direct recycling of Li-ion batteries. Zhan R; Payne T; Leftwich T; Perrine K; Pan L Waste Manag; 2020 Mar; 105():39-48. PubMed ID: 32018141 [TBL] [Abstract][Full Text] [Related]
9. Nickel-Salen-Type Polymer as Conducting Agent and Binder for Carbon-Free Cathodes in Lithium-Ion Batteries. O'Meara C; Karushev MP; Polozhentceva IA; Dharmasena S; Cho H; Yurkovich BJ; Kogan S; Kim JH ACS Appl Mater Interfaces; 2019 Jan; 11(1):525-533. PubMed ID: 30540164 [TBL] [Abstract][Full Text] [Related]
10. Recycling of LiFePO Chen X; Li S; Wang Y; Jiang Y; Tan X; Han W; Wang S Waste Manag; 2021 Dec; 136():67-75. PubMed ID: 34637980 [TBL] [Abstract][Full Text] [Related]
11. Lithium Borate Containing Bifunctional Binder To Address Both Ion Transporting and Polysulfide Trapping for High-Performance Li-S Batteries. Zhong L; Mo Y; Deng K; Wang S; Han D; Ren S; Xiao M; Meng Y ACS Appl Mater Interfaces; 2019 Aug; 11(32):28968-28977. PubMed ID: 31334632 [TBL] [Abstract][Full Text] [Related]
12. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
13. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries. Shi Y; Zhou X; Yu G Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258 [TBL] [Abstract][Full Text] [Related]
14. Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries. Prasanna K; Subburaj T; Jo YN; Lee WJ; Lee CW ACS Appl Mater Interfaces; 2015 Apr; 7(15):7884-90. PubMed ID: 25822540 [TBL] [Abstract][Full Text] [Related]
15. Polymeric Binder Design for Sustainable Lithium-Ion Battery Chemistry. Yoon J; Lee J; Kim H; Kim J; Jin HJ Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257053 [TBL] [Abstract][Full Text] [Related]
16. Exploring Phenolphthalein Polyarylethers as High-Performance Alternative Binders for High-Voltage Cathodes in Lithium-Ion Batteries. Yang K; Chen K; Zhang X; Gao S; Sun J; Gong J; Chai J; Zheng Y; Liu Z; Wang H Small; 2024 Oct; 20(43):e2403993. PubMed ID: 39031746 [TBL] [Abstract][Full Text] [Related]
17. Combining ReaxFF Simulations and Experiments to Evaluate the Structure-Property Characteristics of Polymeric Binders in Si-Based Li-Ion Batteries. Bhati M; Nguyen QA; Biswal SL; Senftle TP ACS Appl Mater Interfaces; 2021 Sep; 13(35):41956-41967. PubMed ID: 34432417 [TBL] [Abstract][Full Text] [Related]
18. Sulfated Alginate as an Effective Polymer Binder for High-Voltage LiNi Oishi A; Tatara R; Togo E; Inoue H; Yasuno S; Komaba S ACS Appl Mater Interfaces; 2022 Nov; 14(46):51808-51818. PubMed ID: 36351777 [TBL] [Abstract][Full Text] [Related]
19. A systematic investigation of polymer binder flexibility on the electrode performance of lithium-ion batteries. Yuca N; Zhao H; Song X; Dogdu MF; Yuan W; Fu Y; Battaglia VS; Xiao X; Liu G ACS Appl Mater Interfaces; 2014 Oct; 6(19):17111-8. PubMed ID: 25203598 [TBL] [Abstract][Full Text] [Related]
20. Recovery and Reuse of Composite Cathode Binder in Lithium Ion Batteries. Sarkar A; May R; Ramesh S; Chang W; Marbella LE ChemistryOpen; 2021 May; 10(5):545-552. PubMed ID: 33945235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]