These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33595284)

  • 1. Bioinspired Design of Novel Microscaffolds for Fibroblast Guidance toward
    Pedram P; Mazio C; Imparato G; Netti PA; Salerno A
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9589-9603. PubMed ID: 33595284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of polycaprolactone scaffolds using a sacrificial compression-molding process.
    Yao D; Smith A; Nagarajan P; Vasquez A; Dang L; Chaudhry GR
    J Biomed Mater Res B Appl Biomater; 2006 May; 77(2):287-95. PubMed ID: 16292759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CL─CO─LA)-b-PEG for wound healing applications.
    Oroojalian F; Jahanafrooz Z; Chogan F; Rezayan AH; Malekzade E; Rezaei SJT; Nabid MR; Sahebkar A
    J Cell Biochem; 2019 Oct; 120(10):17194-17207. PubMed ID: 31104319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid polycaprolactone/polyethylene oxide scaffolds with tunable fiber surface morphology, improved hydrophilicity and biodegradability for bone tissue engineering applications.
    Remya KR; Chandran S; Mani S; John A; Ramesh P
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1444-1462. PubMed ID: 29656699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic acid) and starch based biodegradable scaffolds.
    Ghosh S; Viana JC; Reis RL; Mano JF
    J Mater Sci Mater Med; 2007 Feb; 18(2):185-93. PubMed ID: 17323149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of cellular proliferation on dense and porous PCL scaffolds.
    Saşmazel HT; Gümüşderelioğlu M; Gürpinar A; Onur MA
    Biomed Mater Eng; 2008; 18(3):119-28. PubMed ID: 18725692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.
    Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating and increasing nano-scaled pore formation on electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers.
    Lyu LX; Huang NP; Yang Y
    J Biomater Sci Polym Ed; 2016 Aug; 27(11):1155-69. PubMed ID: 27126176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the three-dimensional architecture of supercritical CO
    Salerno A; Leonardi AB; Pedram P; Di Maio E; Fanovich MA; Netti PA
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110518. PubMed ID: 32228998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats.
    Lowery JL; Datta N; Rutledge GC
    Biomaterials; 2010 Jan; 31(3):491-504. PubMed ID: 19822363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial patterning of PCL
    Pedram P; Mazio C; Imparato G; Netti PA; Salerno A
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35917812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering.
    Gomes S; Rodrigues G; Martins G; Henriques C; Silva JC
    Int J Biol Macromol; 2017 Sep; 102():1174-1185. PubMed ID: 28487195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.
    Bonvallet PP; Schultz MJ; Mitchell EH; Bain JL; Culpepper BK; Thomas SJ; Bellis SL
    PLoS One; 2015; 10(3):e0122359. PubMed ID: 25793720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat-treated alginate-polycaprolactone core-shell nanofibers by emulsion electrospinning process for biomedical applications.
    Negahdari N; Alizadeh S; Majidi J; Saeed M; Ghadimi T; Tahermanesh K; Arabsorkhi-Mishabi A; Pezeshki-Modaress M
    Int J Biol Macromol; 2024 Aug; 275(Pt 2):133709. PubMed ID: 38977047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores.
    Chen VJ; Ma PX
    Biomaterials; 2004 May; 25(11):2065-73. PubMed ID: 14741621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions.
    Sensini A; Cristofolini L; Zucchelli A; Focarete ML; Gualandi C; DE Mori A; Kao AP; Roldo M; Blunn G; Tozzi G
    J Microsc; 2020 Mar; 277(3):160-169. PubMed ID: 31339556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomed Mater Res A; 2014 Oct; 102(10):3379-92. PubMed ID: 24132871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.