BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 33595319)

  • 1. pH-Sensitive W/O Pickering High Internal Phase Emulsions and W/O/W High Internal Water-Phase Double Emulsions with Tailored Microstructures Costabilized by Lecithin and Silica Inorganic Particles.
    Guan X; Ngai T
    Langmuir; 2021 Mar; 37(8):2843-2854. PubMed ID: 33595319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.
    Pang B; Liu H; Liu P; Peng X; Zhang K
    J Colloid Interface Sci; 2018 Mar; 513():629-637. PubMed ID: 29207345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and stability of W/O-high internal phase emulsions (HIPEs) and derived O/W emulsions stabilized by PGPR and lecithin.
    Okuro PK; Gomes A; Costa ALR; Adame MA; Cunha RL
    Food Res Int; 2019 Aug; 122():252-262. PubMed ID: 31229079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Responsive Pickering high internal phase emulsions stabilized by Waterborne polyurethane.
    Wu J; Guan X; Wang C; Ngai T; Lin W
    J Colloid Interface Sci; 2022 Mar; 610():994-1004. PubMed ID: 34865740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of high internal water-phase double emulsions stabilized by a single anionic surfactant for fabricating interconnecting porous polymer microspheres.
    Li Z; Liu H; Zeng L; Liu H; Yang S; Wang Y
    Langmuir; 2014 Oct; 30(41):12154-63. PubMed ID: 25265198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Step Formation of Pickering Double Emulsion Costabilized by Hydrophobic Silica Nanoparticles and Sodium Alginate.
    Li Y; Li J; Cai Z; Sun Y; Jiang H; Guan X; Ngai T
    Langmuir; 2024 Jun; ():. PubMed ID: 38920295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of double emulsions using hybrid polymer/silica particles: new pickering emulsifiers with adjustable surface wettability.
    Williams M; Warren NJ; Fielding LA; Armes SP; Verstraete P; Smets J
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20919-27. PubMed ID: 25380488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double emulsions and colloidosomes-in-colloidosomes using silica-based Pickering emulsifiers.
    Williams M; Armes SP; Verstraete P; Smets J
    Langmuir; 2014 Mar; 30(10):2703-11. PubMed ID: 24559174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of stable Pickering emulsions/oil powders and Pickering HIPEs stabilized by gliadin/chitosan complex particles.
    Yuan DB; Hu YQ; Zeng T; Yin SW; Tang CH; Yang XQ
    Food Funct; 2017 Jun; 8(6):2220-2230. PubMed ID: 28513748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-in-Oil Pickering Emulsions Stabilized by Hydrophobized Protein Microspheres.
    Jiang H; Hu X; Jiang W; Guan X; Li Y; Ngai T
    Langmuir; 2022 Oct; 38(40):12273-12280. PubMed ID: 36172706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring Pickering Double Emulsions by in Situ Particle Surface Modification.
    Tiwari M; Basavaraj MG; Dugyala VR
    Langmuir; 2023 Feb; 39(8):2911-2921. PubMed ID: 36722867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastable Water-in-Oil High Internal Phase Emulsions Featuring Interfacial and Biphasic Network Stabilization.
    Lee MC; Tan C; Ravanfar R; Abbaspourrad A
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26433-26441. PubMed ID: 31245993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pickering emulsions stabilized by charged nanoparticles.
    Ridel L; Bolzinger MA; Gilon-Delepine N; Dugas PY; Chevalier Y
    Soft Matter; 2016 Sep; 12(36):7564-76. PubMed ID: 27510805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Pickering Emulsions with Environmentally Responsive Hairy Silica Nanoparticles.
    Liu M; Chen X; Yang Z; Xu Z; Hong L; Ngai T
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32250-32258. PubMed ID: 27933833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demulsification of Bacteria-Stabilized Pickering Emulsions Using Modified Silica Nanoparticles.
    Xie H; Zhao W; Zhang X; Wang Z
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24102-24112. PubMed ID: 35603430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing the stability and type of hydroxyapatite stabilized Pickering emulsion.
    Zhang M; Wang AJ; Li JM; Song N; Song Y; He R
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):396-404. PubMed ID: 27770908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the Interactions between Pickering Emulsion Droplets Stabilized with pH-Responsive Nanoparticles.
    Mao X; Yang D; Xie L; Liu Q; Tang T; Zhang H; Zeng H
    J Phys Chem B; 2021 Jul; 125(26):7320-7331. PubMed ID: 34165981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Destabilizing Pickering emulsions using fumed silica particles with different wettabilities.
    Griffith C; Daigle H
    J Colloid Interface Sci; 2019 Jul; 547():117-126. PubMed ID: 30952073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and Characterization of Novel Water-Insoluble Protein Porous Materials Derived from Pickering High Internal-Phase Emulsions Stabilized by Gliadin-Chitosan-Complex Particles.
    Zhou FZ; Yu XH; Zeng T; Yin SW; Tang CH; Yang XQ
    J Agric Food Chem; 2019 Mar; 67(12):3423-3431. PubMed ID: 30835109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the shear stability of water-in-water Pickering emulsions stabilized with silica nanoparticles.
    Griffith C; Daigle H
    J Colloid Interface Sci; 2018 Dec; 532():83-91. PubMed ID: 30077068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.