These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 33595319)

  • 41. W/O high internal phase emulsion featuring by interfacial crystallization of diacylglycerol and different internal compositions.
    Liu Y; Lee WJ; Tan CP; Lai OM; Wang Y; Qiu C
    Food Chem; 2022 Mar; 372():131305. PubMed ID: 34653777
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Water-in-oil high internal phase Pickering emulsions formed by spontaneous interfacial hydrolysis of monomer oil.
    Guan X; Sheng Y; Jiang H; Binks BP; Ngai T
    J Colloid Interface Sci; 2022 Oct; 623():476-486. PubMed ID: 35597017
    [TBL] [Abstract][Full Text] [Related]  

  • 43. General destabilization mechanism of pH-responsive Pickering emulsions.
    Anjali TG; Basavaraj MG
    Phys Chem Chem Phys; 2017 Nov; 19(45):30790-30797. PubMed ID: 29134210
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stabilization of high internal phase Pickering emulsions with millimeter-scale droplets using silica particles.
    Kim D; Lee H; Yoon H; Oh D; Kim K
    Soft Matter; 2023 May; 19(21):3841-3848. PubMed ID: 37194380
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein-Based Pickering High Internal Phase Emulsions as Nutraceutical Vehicles of and the Template for Advanced Materials: A Perspective Paper.
    Huang XN; Zhu JJ; Xi YK; Yin SW; Ngai T; Yang XQ
    J Agric Food Chem; 2019 Sep; 67(35):9719-9726. PubMed ID: 31398015
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tailored rigidity of W/O Pickering emulsions using diacylglycerol-based surface-active solid lipid nanoparticles.
    Li G; Lee WJ; Tan CP; Lai OM; Wang Y; Qiu C
    Food Funct; 2021 Nov; 12(23):11732-11746. PubMed ID: 34698749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Factors that affect Pickering emulsions stabilized by mesoporous hollow silica microspheres.
    Zhang Y; Bao Y; Zhang W; Xiang R
    J Colloid Interface Sci; 2023 Mar; 633():1012-1021. PubMed ID: 36516677
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple Pickering emulsions stabilized by the same particles with different extent of hydrophobization
    Zhu Y; Chen T; Cui Z
    Front Chem; 2022; 10():950932. PubMed ID: 36059875
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water-in-oil Pickering emulsion polymerization of N-isopropyl acrylamide using starch-based nanoparticles as emulsifier.
    Zhai K; Pei X; Wang C; Deng Y; Tan Y; Bai Y; Zhang B; Xu K; Wang P
    Int J Biol Macromol; 2019 Jun; 131():1032-1037. PubMed ID: 30898598
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs).
    Zhang T; Xu Z; Cai Z; Guo Q
    Phys Chem Chem Phys; 2015 Jun; 17(24):16033-9. PubMed ID: 26028420
    [TBL] [Abstract][Full Text] [Related]  

  • 51. pH-switchable pickering emulsions stabilized by polyelectrolyte-biosurfactant complex coacervate colloids.
    Laquerbe S; Carvalho A; Schmutz M; Poirier A; Baccile N; Ben Messaoud G
    J Colloid Interface Sci; 2021 Oct; 600():23-36. PubMed ID: 34000475
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of the repartition of the particles in Pickering emulsions in relation with their rheological properties.
    Velandia SF; Marchal P; Lemaitre C; Sadtler V; Roques-Carmes T
    J Colloid Interface Sci; 2021 May; 589():286-297. PubMed ID: 33472148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermoresponsive starch-based particle-stabilized Pickering high internal phase emulsions as nutraceutical containers for controlled release.
    Wang C; Pei X; Tan J; Zhang T; Zhai K; Zhang F; Bai Y; Deng Y; Zhang B; Wang Y; Tan Y; Xu K; Wang P
    Int J Biol Macromol; 2020 Mar; 146():171-178. PubMed ID: 31904457
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.
    Hu Z; Ballinger S; Pelton R; Cranston ED
    J Colloid Interface Sci; 2015 Feb; 439():139-48. PubMed ID: 25463186
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct measurement of contact angles of silica particles in relation to double inversion of pickering emulsions.
    Binks BP; Isa L; Tyowua AT
    Langmuir; 2013 Apr; 29(16):4923-7. PubMed ID: 23570266
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of Zein/Pectin Hybrid Particle-Stabilized Pickering High Internal Phase Emulsions with Robust and Ordered Interface Architecture.
    Zhou FZ; Huang XN; Wu ZL; Yin SW; Zhu JH; Tang CH; Yang XQ
    J Agric Food Chem; 2018 Oct; 66(42):11113-11123. PubMed ID: 30272970
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phase Inversions Observed in Thermoresponsive Pickering Emulsions Stabilized by Surface Functionalized Colloidal Silica.
    Björkegren S; Freixiela Dias MCA; Lundahl K; Nordstierna L; Palmqvist A
    Langmuir; 2020 Mar; 36(9):2357-2367. PubMed ID: 32075376
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of food-grade Pickering high internal phase emulsions stabilized by the mixture of β-cyclodextrin and sugar beet pectin.
    Liu Z; Li Y; Geng S; Mo H; Liu B
    Int J Biol Macromol; 2021 Jul; 182():252-263. PubMed ID: 33838198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High Internal Phase Emulsions Stabilized by a Zeolite-Surfactant Combination in a Composition-Dependent Manner.
    Gossard A; Fabrègue N; Hertz A; Grandjean A
    Langmuir; 2019 Dec; 35(52):17114-17121. PubMed ID: 31818101
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase inversion of the Pickering emulsions stabilized by plate-shaped clay particles.
    Nonomura Y; Kobayashi N
    J Colloid Interface Sci; 2009 Feb; 330(2):463-6. PubMed ID: 18992900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.