These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33595551)

  • 1. Understanding the nature of NH
    Yang G; Ran J; Du X; Wang X; Ran Z; Chen Y; Zhang L; Crittenden J
    Phys Chem Chem Phys; 2021 Mar; 23(8):4700-4710. PubMed ID: 33595551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The discrepancy of NH
    Ren X; Duan Y; Du W; Zhu Y; Wang L; Zhang Y; Yu T
    RSC Adv; 2024 Feb; 14(11):7499-7506. PubMed ID: 38440268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Understanding of Cu-CHA Catalyst as Sensor for Direct NH
    Chen P; Rizzotto V; Khetan A; Xie K; Moos R; Pitsch H; Ye D; Simon U
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8097-8105. PubMed ID: 30706712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Efficient NO Abatement over Cu-ZSM-5 with Special Nanosheet Features.
    Wang H; Jia J; Liu S; Chen H; Wei Y; Wang Z; Zheng L; Wang Z; Zhang R
    Environ Sci Technol; 2021 Apr; 55(8):5422-5434. PubMed ID: 33720690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the reaction mechanism over PMoA for low temperature NH
    Jia Y; Jiang J; Zheng R; Guo L; Yuan J; Zhang S; Gu M
    J Hazard Mater; 2021 Jun; 412():125258. PubMed ID: 33548788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu/SAPO-34 prepared by a facile ball milling method for enhanced catalytic performance in the selective catalytic reduction of NO
    Chang H; Qin X; Ma L; Zhang T; Li J
    Phys Chem Chem Phys; 2019 Oct; 21(39):22113-22120. PubMed ID: 31570907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction Pathways of the Selective Catalytic Reduction of NO with NH
    Gao M; He G; Zhang W; Du J; He H
    Environ Sci Technol; 2021 Jun; ():. PubMed ID: 34165293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strikingly distinctive NH
    Shan Y; He G; Du J; Sun Y; Liu Z; Fu Y; Liu F; Shi X; Yu Y; He H
    Nat Commun; 2022 Aug; 13(1):4606. PubMed ID: 35941128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic identification and catalytic relevance of NH
    Rizzotto V; Chen D; Tabak BM; Yang JY; Ye D; Simon U; Chen P
    Chemosphere; 2020 Jul; 250():126272. PubMed ID: 32109703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobility and Reactivity of Cu
    Millan R; Cnudde P; van Speybroeck V; Boronat M
    JACS Au; 2021 Oct; 1(10):1778-1787. PubMed ID: 34723280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13.
    Paolucci C; Verma AA; Bates SA; Kispersky VF; Miller JT; Gounder R; Delgass WN; Ribeiro FH; Schneider WF
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11828-33. PubMed ID: 25220217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled synthesis of Cu-based SAPO-18/34 intergrowth zeolites for selective catalytic reduction of NO
    Zhang S; Ming S; Guo L; Bian C; Meng Y; Liu Q; Dong Y; Bi J; Li D; Wu Q; Qin K; Chen Z; Pang L; Cai W; Li T
    J Hazard Mater; 2021 Jul; 414():125543. PubMed ID: 33677322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Distribution of Brønsted Acid Sites Determines the Mobility of Reactive Cu Ions in the Cu-SSZ-13 Catalyst during the Selective Catalytic Reduction of NO
    Fu Y; Ding W; Lei H; Sun Y; Du J; Yu Y; Simon U; Chen P; Shan Y; He G; He H
    J Am Chem Soc; 2024 Apr; 146(16):11141-11151. PubMed ID: 38600025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Effects of Keggin-Type Phosphotungstic Acid-Supported Single-Atom Catalysts in a Fast NH
    Lin CH; Qin RC; Cao N; Wang D; Liu CG
    Inorg Chem; 2022 Dec; 61(48):19156-19171. PubMed ID: 36414004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems.
    Lezcano-Gonzalez I; Deka U; Arstad B; Van Yperen-De Deyne A; Hemelsoet K; Waroquier M; Van Speybroeck V; Weckhuysen BM; Beale AM
    Phys Chem Chem Phys; 2014 Jan; 16(4):1639-50. PubMed ID: 24322601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Cu/SAPO-34 Catalysts Prepared by Solid-State and Liquid Ion-Exchange Methods for NO
    Urrutxua M; Pereda-Ayo B; De-La-Torre U; González-Velasco JR
    ACS Omega; 2019 Sep; 4(12):14699-14713. PubMed ID: 31552309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between copper redox and transfer and support acidity and topology in low temperature NH
    Wu Y; Zhao W; Ahn SH; Wang Y; Walter ED; Chen Y; Derewinski MA; Washton NM; Rappé KG; Wang Y; Mei D; Hong SB; Gao F
    Nat Commun; 2023 May; 14(1):2633. PubMed ID: 37149681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical investigation of selective catalytic reduction of NO on MIL-100-Fe.
    Zhang M; Wang W; Chen Y
    Phys Chem Chem Phys; 2018 Jan; 20(4):2211-2219. PubMed ID: 29302653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot hydrothermal synthesis of dual metal incorporated CuCe-SAPO-34 zeolite for enhancing ammonia selective catalytic reduction.
    Zhou X; Chen Z; Guo Z; Yang H; Shao J; Zhang X; Zhang S
    J Hazard Mater; 2021 Mar; 405():124177. PubMed ID: 33082022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoting effects of water on the NH
    Wan Y; Yang G; Xiang J; Shen X; Yang D; Chen Y; Rac V; Rakic V; Du X
    Dalton Trans; 2020 Jan; 49(3):764-773. PubMed ID: 31850452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.