These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33595558)

  • 1. Homogeneous nucleation of carbon dioxide in supersonic nozzles II: molecular dynamics simulations and properties of nucleating clusters.
    Halonen R; Tikkanen V; Reischl B; Dingilian KK; Wyslouzil BE; Vehkamäki H
    Phys Chem Chem Phys; 2021 Feb; 23(8):4517-4529. PubMed ID: 33595558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous nucleation of carbon dioxide in supersonic nozzles I: experiments and classical theories.
    Dingilian KK; Halonen R; Tikkanen V; Reischl B; Vehkamäki H; Wyslouzil BE
    Phys Chem Chem Phys; 2020 Sep; 22(34):19282-19298. PubMed ID: 32815933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Argon nucleation in a cryogenic supersonic nozzle.
    Sinha S; Bhabhe A; Laksmono H; Wölk J; Strey R; Wyslouzil B
    J Chem Phys; 2010 Feb; 132(6):064304. PubMed ID: 20151740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large scale molecular dynamics simulations of homogeneous nucleation.
    Diemand J; Angélil R; Tanaka KK; Tanaka H
    J Chem Phys; 2013 Aug; 139(7):074309. PubMed ID: 23968094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation.
    Halonen R; Zapadinsky E; Vehkamäki H
    J Chem Phys; 2018 Apr; 148(16):164508. PubMed ID: 29716220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleation Rate of N
    Song J; Berry JD; Goudeli E
    J Phys Chem B; 2023 Nov; 127(46):9976-9984. PubMed ID: 37941350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen nucleation in a cryogenic supersonic nozzle.
    Bhabhe A; Wyslouzil B
    J Chem Phys; 2011 Dec; 135(24):244311. PubMed ID: 22225160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of liquid clusters in large-scale molecular dynamics nucleation simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    J Chem Phys; 2014 Feb; 140(7):074303. PubMed ID: 24559349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation.
    Römer F; Kraska T
    J Chem Phys; 2007 Dec; 127(23):234509. PubMed ID: 18154402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of thermostats and carrier gas on simulations of nucleation.
    Wedekind J; Reguera D; Strey R
    J Chem Phys; 2007 Aug; 127(6):064501. PubMed ID: 17705606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy of cluster formation and a new scaling relation for the nucleation rate.
    Tanaka KK; Diemand J; Angélil R; Tanaka H
    J Chem Phys; 2014 May; 140(19):194310. PubMed ID: 24852541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonisothermal nucleation in the gas phase is driven by cool subcritical clusters.
    Tikkanen V; Reischl B; Vehkamäki H; Halonen R
    Proc Natl Acad Sci U S A; 2022 Jul; 119(28):e2201955119. PubMed ID: 35787057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous nucleation of water in argon. Nucleation rate computation from molecular simulations of TIP4P and TIP4P/2005 water model.
    Dumitrescu LR; Smeulders DM; Dam JA; Gaastra-Nedea SV
    J Chem Phys; 2017 Feb; 146(8):084309. PubMed ID: 28249439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous SPC/E water nucleation in large molecular dynamics simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    J Chem Phys; 2015 Aug; 143(6):064507. PubMed ID: 26277145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between the classical theory predictions and molecular simulation results for heterogeneous nucleation of argon.
    Lauri A; Zapadinsky E; Vehkamäki H; Kulmala M
    J Chem Phys; 2006 Oct; 125(16):164712. PubMed ID: 17092125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulations of critical cluster sizes and nucleation rates of water.
    Merikanto J; Vehkamaki H; Zapadinsky E
    J Chem Phys; 2004 Jul; 121(2):914-24. PubMed ID: 15260623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homogeneous water nucleation in carbon dioxide-nitrogen mixtures: Experimental study on pressure and carrier gas effects.
    Campagna MM; Hrubý J; van Dongen MEH; Smeulders DMJ
    J Chem Phys; 2021 Apr; 154(15):154301. PubMed ID: 33887921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vapor-phase nucleation of n-pentane, n-hexane, and n-heptane: Critical cluster properties.
    Ogunronbi KE; Wyslouzil BE
    J Chem Phys; 2019 Oct; 151(15):154307. PubMed ID: 31640360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of methanol clustering on methanol-water nucleation.
    Sun T; Wilemski G; Hale BN; Wyslouzil BE
    J Chem Phys; 2022 Nov; 157(18):184301. PubMed ID: 36379791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.