These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33595588)

  • 1. A highly tunable quadruple quantum dot in a narrow bandgap semiconductor InAs nanowire.
    Mu J; Huang S; Liu ZH; Li W; Wang JY; Pan D; Huang GY; Chen Y; Zhao J; Xu HQ
    Nanoscale; 2021 Feb; 13(7):3983-3990. PubMed ID: 33595588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.
    Wang JY; Huang S; Huang GY; Pan D; Zhao J; Xu HQ
    Nano Lett; 2017 Jul; 17(7):4158-4164. PubMed ID: 28604002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy.
    Fan D; Li S; Kang N; Caroff P; Wang LB; Huang YQ; Deng MT; Yu CL; Xu HQ
    Nanoscale; 2015 Sep; 7(36):14822-8. PubMed ID: 26308470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A charge sensor integration to tunable double quantum dots on two neighboring InAs nanowires.
    Wang X; Huang S; Wang JY; Pan D; Zhao J; Xu HQ
    Nanoscale; 2021 Jan; 13(2):1048-1054. PubMed ID: 33393583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly symmetric and tunable tunnel couplings in InAs/InP nanowire heterostructure quantum dots.
    Thomas FS; Baumgartner A; Gubser L; Jünger C; Fülöp G; Nilsson M; Rossi F; Zannier V; Sorba L; Schönenberger C
    Nanotechnology; 2019 Nov; 31(13):135003. PubMed ID: 31778992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mechanically Tunable Quantum Dot in a Graphene Break Junction.
    Caneva S; Hermans M; Lee M; García-Fuente A; Watanabe K; Taniguchi T; Dekker C; Ferrer J; van der Zant HSJ; Gehring P
    Nano Lett; 2020 Jul; 20(7):4924-4931. PubMed ID: 32551676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gigahertz Quantized Charge Pumping in Bottom-Gate-Defined InAs Nanowire Quantum Dots.
    d'Hollosy S; Jung M; Baumgartner A; Guzenko VA; Madsen MH; Nygård J; Schönenberger C
    Nano Lett; 2015 Jul; 15(7):4585-90. PubMed ID: 26086240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large and Uniform Optical Emission Shifts in Quantum Dots Strained along Their Growth Axis.
    Stepanov P; Elzo-Aizarna M; Bleuse J; Malik NS; Curé Y; Gautier E; Favre-Nicolin V; Gérard JM; Claudon J
    Nano Lett; 2016 May; 16(5):3215-20. PubMed ID: 27058255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments.
    Zwolak JP; Kalantre SS; Wu X; Ragole S; Taylor JM
    PLoS One; 2018; 13(10):e0205844. PubMed ID: 30332463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications.
    Moon H; Lee C; Lee W; Kim J; Chae H
    Adv Mater; 2019 Aug; 31(34):e1804294. PubMed ID: 30650209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-Assisted Tunneling in Hard-Wall InAs/InP Nanowire Quantum Dots.
    Cornia S; Rossella F; Demontis V; Zannier V; Beltram F; Sorba L; Affronte M; Ghirri A
    Sci Rep; 2019 Dec; 9(1):19523. PubMed ID: 31863018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices.
    Trotta R; Wildmann JS; Zallo E; Schmidt OG; Rastelli A
    Nano Lett; 2014 Jun; 14(6):3439-44. PubMed ID: 24845369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics.
    Navarro-Pardo F; Zhao H; Wang ZM; Rosei F
    Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Andreev molecules in semiconductor nanowire double quantum dots.
    Su Z; Tacla AB; Hocevar M; Car D; Plissard SR; Bakkers EPAM; Daley AJ; Pekker D; Frolov SM
    Nat Commun; 2017 Sep; 8(1):585. PubMed ID: 28928420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric Amplifiers Based on Quantum Dots.
    Cochrane L; Lundberg T; Ibberson DJ; Ibberson LA; Hutin L; Bertrand B; Stelmashenko N; Robinson JWA; Vinet M; Seshia AA; Gonzalez-Zalba MF
    Phys Rev Lett; 2022 May; 128(19):197701. PubMed ID: 35622052
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Zwolak JP; Taylor JM
    Rev Mod Phys; 2023; 95(1):. PubMed ID: 37051403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C₆₁-butyric acid methyl ester interface.
    El-Ballouli AO; Alarousu E; Bernardi M; Aly SM; Lagrow AP; Bakr OM; Mohammed OF
    J Am Chem Soc; 2014 May; 136(19):6952-9. PubMed ID: 24521255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast Charge Sensing of Si/SiGe Quantum Dots via a High-Frequency Accumulation Gate.
    Volk C; Chatterjee A; Ansaloni F; Marcus CM; Kuemmeth F
    Nano Lett; 2019 Aug; 19(8):5628-5633. PubMed ID: 31339321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus-free 1.5  µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform.
    Wei WQ; Zhang JY; Wang JH; Cong H; Guo JJ; Wang ZH; Xu HX; Wang T; Zhang JJ
    Opt Lett; 2020 Apr; 45(7):2042-2045. PubMed ID: 32236063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.