These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 33595884)
1. Bioprinting of human nasoseptal chondrocytes-laden collagen hydrogel for cartilage tissue engineering. Lan X; Liang Y; Erkut EJN; Kunze M; Mulet-Sierra A; Gong T; Osswald M; Ansari K; Seikaly H; Boluk Y; Adesida AB FASEB J; 2021 Mar; 35(3):e21191. PubMed ID: 33595884 [TBL] [Abstract][Full Text] [Related]
2. Autologous nasal chondrocytes delivered by injectable hydrogel for in vivo articular cartilage regeneration. Chen W; Li C; Peng M; Xie B; Zhang L; Tang X Cell Tissue Bank; 2018 Mar; 19(1):35-46. PubMed ID: 28815373 [TBL] [Abstract][Full Text] [Related]
3. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. Ren X; Wang F; Chen C; Gong X; Yin L; Yang L BMC Musculoskelet Disord; 2016 Jul; 17():301. PubMed ID: 27439428 [TBL] [Abstract][Full Text] [Related]
4. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Mumme M; Barbero A; Miot S; Wixmerten A; Feliciano S; Wolf F; Asnaghi AM; Baumhoer D; Bieri O; Kretzschmar M; Pagenstert G; Haug M; Schaefer DJ; Martin I; Jakob M Lancet; 2016 Oct; 388(10055):1985-1994. PubMed ID: 27789021 [TBL] [Abstract][Full Text] [Related]
5. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
6. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Isogai N; Kusuhara H; Ikada Y; Ohtani H; Jacquet R; Hillyer J; Lowder E; Landis WJ Tissue Eng; 2006 Apr; 12(4):691-703. PubMed ID: 16674284 [TBL] [Abstract][Full Text] [Related]
7. A novel 3D histotypic cartilage construct engineered by supercritical carbon dioxide decellularized porcine nasal cartilage graft and chondrocytes exhibited chondrogenic capability Lee SS; Wu YC; Huang SH; Chen YC; Srinivasan P; Hsieh DJ; Yeh YC; Lai YP; Lin YN Int J Med Sci; 2021; 18(10):2217-2227. PubMed ID: 33859530 [TBL] [Abstract][Full Text] [Related]
8. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110578. PubMed ID: 32228894 [TBL] [Abstract][Full Text] [Related]
9. Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting. You F; Chen X; Cooper DML; Chang T; Eames BF Biofabrication; 2018 Dec; 11(1):015015. PubMed ID: 30524110 [TBL] [Abstract][Full Text] [Related]
10. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Schipani R; Scheurer S; Florentin R; Critchley SE; Kelly DJ Biofabrication; 2020 May; 12(3):035011. PubMed ID: 32252045 [TBL] [Abstract][Full Text] [Related]
11. In vitro maturation and in vivo stability of bioprinted human nasal cartilage. Lan X; Liang Y; Vyhlidal M; Erkut EJ; Kunze M; Mulet-Sierra A; Osswald M; Ansari K; Seikaly H; Boluk Y; Adesida AB J Tissue Eng; 2022; 13():20417314221086368. PubMed ID: 35599742 [TBL] [Abstract][Full Text] [Related]
12. Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces. Diloksumpan P; de Ruijter M; Castilho M; Gbureck U; Vermonden T; van Weeren PR; Malda J; Levato R Biofabrication; 2020 Feb; 12(2):025014. PubMed ID: 31918421 [TBL] [Abstract][Full Text] [Related]
13. Tissue engineering of autologous cartilage grafts in three-dimensional in vitro macroaggregate culture system. Naumann A; Dennis JE; Aigner J; Coticchia J; Arnold J; Berghaus A; Kastenbauer ER; Caplan AI Tissue Eng; 2004; 10(11-12):1695-706. PubMed ID: 15684678 [TBL] [Abstract][Full Text] [Related]
14. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related]
15. Bioprinting of Cartilage with Bioink Based on High-Concentration Collagen and Chondrocytes. Beketov EE; Isaeva EV; Yakovleva ND; Demyashkin GA; Arguchinskaya NV; Kisel AA; Lagoda TS; Malakhov EP; Kharlov VI; Osidak EO; Domogatsky SP; Ivanov SA; Shegay PV; Kaprin AD Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768781 [TBL] [Abstract][Full Text] [Related]
16. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737 [TBL] [Abstract][Full Text] [Related]
17. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
18. Optimization of Freeform Reversible Embedding of Suspended Hydrogel Microspheres for Substantially Improved Three-Dimensional Bioprinting Capabilities. Wu CA; Zhu Y; Venkatesh A; Stark CJ; Lee SH; Woo YJ Tissue Eng Part C Methods; 2023 Mar; 29(3):85-94. PubMed ID: 36719778 [TBL] [Abstract][Full Text] [Related]
19. Approaches for Kandel S; Querido W; Falcon JM; Reiners DJ; Pleshko N Tissue Eng Part C Methods; 2020 Apr; 26(4):225-238. PubMed ID: 32131710 [TBL] [Abstract][Full Text] [Related]
20. Differences in cartilage-forming capacity of expanded human chondrocytes from ear and nose and their gene expression profiles. Hellingman CA; Verwiel ET; Slagt I; Koevoet W; Poublon RM; Nolst-Trenité GJ; Baatenburg de Jong RJ; Jahr H; van Osch GJ Cell Transplant; 2011; 20(6):925-40. PubMed ID: 21054934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]