These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33596049)

  • 1. Vibrational Spectroscopic Detection of a Single Virus by Mid-Infrared Photothermal Microscopy.
    Zhang Y; Yurdakul C; Devaux AJ; Wang L; Xu XG; Connor JH; Ünlü MS; Cheng JX
    Anal Chem; 2021 Mar; 93(8):4100-4107. PubMed ID: 33596049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-sensitivity hyperspectral vibrational imaging of heart tissues by mid-infrared photothermal microscopy.
    Kato R; Yano TA; Minamikawa T; Tanaka T
    Anal Sci; 2022 Dec; 38(12):1497-1503. PubMed ID: 36070070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-Infrared Photothermal Microscopy: Principle, Instrumentation, and Applications.
    Xia Q; Yin J; Guo Z; Cheng JX
    J Phys Chem B; 2022 Nov; 126(43):8597-8613. PubMed ID: 36285985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell infrared vibrational analysis by optical trapping mid-infrared photothermal microscopy.
    Kato R; Yano TA; Tanaka T
    Analyst; 2023 Mar; 148(6):1285-1290. PubMed ID: 36811918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution.
    Zhang D; Li C; Zhang C; Slipchenko MN; Eakins G; Cheng JX
    Sci Adv; 2016 Sep; 2(9):e1600521. PubMed ID: 27704043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence-Detected Mid-Infrared Photothermal Microscopy.
    Zhang Y; Zong H; Zong C; Tan Y; Zhang M; Zhan Y; Cheng JX
    J Am Chem Soc; 2021 Aug; 143(30):11490-11499. PubMed ID: 34264654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrabroadband infrared nanospectroscopic imaging.
    Bechtel HA; Muller EA; Olmon RL; Martin MC; Raschke MB
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7191-6. PubMed ID: 24803431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bond-selective imaging by optically sensing the mid-infrared photothermal effect.
    Bai Y; Yin J; Cheng JX
    Sci Adv; 2021 May; 7(20):. PubMed ID: 33990332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast.
    Totachawattana A; Liu H; Mertiri A; Hong MK; Erramilli S; Sander MY
    Opt Lett; 2016 Jan; 41(1):179-82. PubMed ID: 26696188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry.
    Pollard B; Maia FC; Raschke MB; Freitas RO
    Nano Lett; 2016 Jan; 16(1):55-61. PubMed ID: 26654680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy.
    Stiegler JM; Abate Y; Cvitkovic A; Romanyuk YE; Huber AJ; Leone SR; Hillenbrand R
    ACS Nano; 2011 Aug; 5(8):6494-9. PubMed ID: 21770439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting nitrile-containing small molecules by infrared photothermal microscopy.
    Tai F; Koike K; Kawagoe H; Ando J; Kumamoto Y; Smith NI; Sodeoka M; Fujita K
    Analyst; 2021 Apr; 146(7):2307-2312. PubMed ID: 33620044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fingerprinting a Living Cell by Raman Integrated Mid-Infrared Photothermal Microscopy.
    Li X; Zhang D; Bai Y; Wang W; Liang J; Cheng JX
    Anal Chem; 2019 Aug; 91(16):10750-10756. PubMed ID: 31313580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A photonic resonator interferometric scattering microscope for label-free detection of nanometer-scale objects with digital precision in point-of-use environments.
    Liu L; Tibbs J; Li N; Bacon A; Shepherd S; Lee H; Chauhan N; Demirci U; Wang X; Cunningham BT
    Biosens Bioelectron; 2023 May; 228():115197. PubMed ID: 36905862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy.
    Parekh SH; Lee YJ; Aamer KA; Cicerone MT
    Biophys J; 2010 Oct; 99(8):2695-704. PubMed ID: 20959111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for Ebola and Marburg detection.
    Daaboul GG; Lopez CA; Chinnala J; Goldberg BB; Connor JH; Ünlü MS
    ACS Nano; 2014 Jun; 8(6):6047-6055. PubMed ID: 24840765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free multiplexed virus detection using spectral reflectance imaging.
    Lopez CA; Daaboul GG; Vedula RS; Ozkumur E; Bergstein DA; Geisbert TW; Fawcett HE; Goldberg BB; Connor JH; Unlü MS
    Biosens Bioelectron; 2011 Apr; 26(8):3432-7. PubMed ID: 21342761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Background-Suppressed High-Throughput Mid-Infrared Photothermal Microscopy via Pupil Engineering.
    Zong H; Yurdakul C; Bai Y; Zhang M; Ünlü MS; Cheng JX
    ACS Photonics; 2021 Nov; 8(11):3323-3336. PubMed ID: 35966035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast Widefield Mid-Infrared Photothermal Heterodyne Imaging.
    Paiva EM; Schmidt FM
    Anal Chem; 2022 Oct; 94(41):14242-14250. PubMed ID: 36197677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.