These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 33596151)
1. Orthograde signal of dihydropyridine receptor increases Ca Watanabe D; Wada M Am J Physiol Cell Physiol; 2021 May; 320(5):C806-C821. PubMed ID: 33596151 [TBL] [Abstract][Full Text] [Related]
2. Role of calpain in eccentric contraction-induced proteolysis of Ca Kanzaki K; Watanabe D; Kuratani M; Yamada T; Matsunaga S; Wada M J Appl Physiol (1985); 2017 Feb; 122(2):396-405. PubMed ID: 27979982 [TBL] [Abstract][Full Text] [Related]
3. Contribution of impaired myofibril and ryanodine receptor function to prolonged low-frequency force depression after in situ stimulation in rat skeletal muscle. Watanabe D; Kanzaki K; Kuratani M; Matsunaga S; Yanaka N; Wada M J Muscle Res Cell Motil; 2015 Jun; 36(3):275-86. PubMed ID: 25697123 [TBL] [Abstract][Full Text] [Related]
4. Treatment with EUK-134 improves sarcoplasmic reticulum Ca Watanabe D; Aibara C; Wada M Am J Physiol Regul Integr Comp Physiol; 2019 May; 316(5):R543-R551. PubMed ID: 30794441 [TBL] [Abstract][Full Text] [Related]
5. Ca(2+) leakage out of the sarcoplasmic reticulum is increased in type I skeletal muscle fibres in aged humans. Lamboley CR; Wyckelsma VL; McKenna MJ; Murphy RM; Lamb GD J Physiol; 2016 Jan; 594(2):469-81. PubMed ID: 26574292 [TBL] [Abstract][Full Text] [Related]
6. Ryanodine receptors mediate high intracellular Ca Tabuchi A; Tanaka Y; Takagi R; Shirakawa H; Shibaguchi T; Sugiura T; Poole DC; Kano Y Am J Physiol Regul Integr Comp Physiol; 2022 Jan; 322(1):R14-R27. PubMed ID: 34755549 [TBL] [Abstract][Full Text] [Related]
7. DHPR activation underlies SR Ca2+ release induced by osmotic stress in isolated rat skeletal muscle fibers. Pickering JD; White E; Duke AM; Steele DS J Gen Physiol; 2009 May; 133(5):511-24. PubMed ID: 19398777 [TBL] [Abstract][Full Text] [Related]
8. Sarcoplasmic reticulum Ca2+ uptake and leak properties, and SERCA isoform expression, in type I and type II fibres of human skeletal muscle. Lamboley CR; Murphy RM; McKenna MJ; Lamb GD J Physiol; 2014 Mar; 592(6):1381-95. PubMed ID: 24469076 [TBL] [Abstract][Full Text] [Related]
9. Sarcoplasmic reticulum Ca2+ release in rat slow- and fast-twitch muscles. Delbono O; Meissner G J Membr Biol; 1996 May; 151(2):123-30. PubMed ID: 8661500 [TBL] [Abstract][Full Text] [Related]
10. Ryanodine modification of RyR1 retrogradely affects L-type Ca(2+) channel gating in skeletal muscle. Bannister RA; Beam KG J Muscle Res Cell Motil; 2009; 30(5-6):217-23. PubMed ID: 19802526 [TBL] [Abstract][Full Text] [Related]
11. Predominant cause of prolonged low-frequency force depression changes during recovery after in situ fatiguing stimulation of rat fast-twitch muscle. Watanabe D; Wada M Am J Physiol Regul Integr Comp Physiol; 2016 Nov; 311(5):R919-R929. PubMed ID: 27654397 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the effects of inorganic phosphate on caffeine-induced Ca2+ release in fast- and slow-twitch mammalian skeletal muscle. Posterino GS; Dunn SL Am J Physiol Cell Physiol; 2008 Jan; 294(1):C97-105. PubMed ID: 17959728 [TBL] [Abstract][Full Text] [Related]
13. Age-related abnormalities in regulation of the ryanodine receptor in rat fast-twitch muscle. Damiani E; Larsson L; Margreth A Cell Calcium; 1996 Jan; 19(1):15-27. PubMed ID: 8653753 [TBL] [Abstract][Full Text] [Related]
14. Effects of dantrolene on steps of excitation-contraction coupling in mammalian skeletal muscle fibers. Szentesi P; Collet C; Sárközi S; Szegedi C; Jona I; Jacquemond V; Kovács L; Csernoch L J Gen Physiol; 2001 Oct; 118(4):355-75. PubMed ID: 11585849 [TBL] [Abstract][Full Text] [Related]
15. Ca2+ entry-independent effects of L-type Ca2+ channel modulators on Ca2+ sparks in ventricular myocytes. Copello JA; Zima AV; Diaz-Sylvester PL; Fill M; Blatter LA Am J Physiol Cell Physiol; 2007 Jun; 292(6):C2129-40. PubMed ID: 17314267 [TBL] [Abstract][Full Text] [Related]
16. Comparison of myoplasmic calcium movements during excitation-contraction coupling in frog twitch and mouse fast-twitch muscle fibers. Hollingworth S; Baylor SM J Gen Physiol; 2013 May; 141(5):567-83. PubMed ID: 23630340 [TBL] [Abstract][Full Text] [Related]
17. A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle. Zhou J; Yi J; Royer L; Launikonis BS; González A; García J; Ríos E Am J Physiol Cell Physiol; 2006 Feb; 290(2):C539-53. PubMed ID: 16148029 [TBL] [Abstract][Full Text] [Related]
18. The C terminus (amino acids 75-94) and the linker region (amino acids 42-54) of the Ca2+-binding protein S100A1 differentially enhance sarcoplasmic Ca2+ release in murine skinned skeletal muscle fibers. Most P; Remppis A; Weber C; Bernotat J; Ehlermann P; Pleger ST; Kirsch W; Weber M; Uttenweiler D; Smith GL; Katus HA; Fink RH J Biol Chem; 2003 Jul; 278(29):26356-64. PubMed ID: 12721284 [TBL] [Abstract][Full Text] [Related]
19. Leaky ryanodine receptors delay the activation of store overload-induced Ca2+ release, a mechanism underlying malignant hyperthermia-like events in dystrophic muscle. Cully TR; Launikonis BS Am J Physiol Cell Physiol; 2016 Apr; 310(8):C673-80. PubMed ID: 26825125 [TBL] [Abstract][Full Text] [Related]
20. Sarcoplasmic reticulum calcium pump in cardiac and slow twitch skeletal muscle but not fast twitch skeletal muscle undergoes phosphorylation by endogenous and exogenous Ca2+/calmodulin-dependent protein kinase. Characterization of optimal conditions for calcium pump phosphorylation. Hawkins C; Xu A; Narayanan N J Biol Chem; 1994 Dec; 269(49):31198-206. PubMed ID: 7983062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]