These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 33596151)
21. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres. Trinh HH; Lamb GD Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925 [TBL] [Abstract][Full Text] [Related]
22. Adaptation of the skeletal muscle calcium-release mechanism to weight-bearing condition. Kandarian SC; Peters DG; Favero TG; Ward CW; Williams JH Am J Physiol; 1996 Jun; 270(6 Pt 1):C1588-94. PubMed ID: 8764140 [TBL] [Abstract][Full Text] [Related]
23. Dihydropyridine receptors actively control gating of ryanodine receptors in resting mouse skeletal muscle fibres. Robin G; Allard B J Physiol; 2012 Dec; 590(23):6027-36. PubMed ID: 23006480 [TBL] [Abstract][Full Text] [Related]
24. K201 (JTV519) is a Ca2+-Dependent Blocker of SERCA and a Partial Agonist of Ryanodine Receptors in Striated Muscle. Darcy YL; Diaz-Sylvester PL; Copello JA Mol Pharmacol; 2016 Aug; 90(2):106-15. PubMed ID: 27235390 [TBL] [Abstract][Full Text] [Related]
25. Conformational coupling of DHPR and RyR1 in skeletal myotubes is influenced by long-range allosterism: evidence for a negative regulatory module. Lee EH; Lopez JR; Li J; Protasi F; Pessah IN; Kim DH; Allen PD Am J Physiol Cell Physiol; 2004 Jan; 286(1):C179-89. PubMed ID: 13679303 [TBL] [Abstract][Full Text] [Related]
26. Nandrolone decanoate treatment affects sarcoplasmic reticulum Ca(2+) ATPase function in skinned rat slow- and fast-twitch fibres. Bouhlel A; Joumaa WH; Léoty C Pflugers Arch; 2003 Sep; 446(6):728-34. PubMed ID: 12811564 [TBL] [Abstract][Full Text] [Related]
27. Ratio of dihydropyridine to ryanodine receptors in mammalian and frog twitch muscles in relation to the mechanical hypothesis of excitation-contraction coupling. Margreth A; Damiani E; Tobaldin G Biochem Biophys Res Commun; 1993 Dec; 197(3):1303-11. PubMed ID: 8280147 [TBL] [Abstract][Full Text] [Related]
28. Aortas isolated from sinoaortic-denervated rats exhibit rhythmic contractions that are regulated by pharmacologically distinct calcium sources. Rocha ML; Bendhack LM Basic Clin Pharmacol Toxicol; 2008 Apr; 102(4):352-9. PubMed ID: 18282194 [TBL] [Abstract][Full Text] [Related]
29. Functional behaviour of the ryanodine receptor/Ca(2+)-release channel in vesiculated derivatives of the junctional membrane of terminal cisternae of rabbit fast muscle sarcoplasmic reticulum. Damiani E; Tobaldin G; Bortoloso E; Margreth A Cell Calcium; 1997 Aug; 22(2):129-50. PubMed ID: 9292231 [TBL] [Abstract][Full Text] [Related]
30. Modulation of the ryanodine receptor sarcoplasmic reticular Ca2+ channel in skinned fibers of fast- and slow-twitch skeletal muscles from rabbits. Su JY; Chang YI Pflugers Arch; 1995 Jul; 430(3):358-64. PubMed ID: 7491259 [TBL] [Abstract][Full Text] [Related]
31. Efficient High-Throughput Screening by Endoplasmic Reticulum Ca Murayama T; Kurebayashi N; Ishigami-Yuasa M; Mori S; Suzuki Y; Akima R; Ogawa H; Suzuki J; Kanemaru K; Oyamada H; Kiuchi Y; Iino M; Kagechika H; Sakurai T Mol Pharmacol; 2018 Jul; 94(1):722-730. PubMed ID: 29674523 [TBL] [Abstract][Full Text] [Related]
32. The Ca 2+ leak paradox and rogue ryanodine receptors: SR Ca 2+ efflux theory and practice. Sobie EA; Guatimosim S; Gómez-Viquez L; Song LS; Hartmann H; Saleet Jafri M; Lederer WJ Prog Biophys Mol Biol; 2006; 90(1-3):172-85. PubMed ID: 16326215 [TBL] [Abstract][Full Text] [Related]
33. Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat. Murphy RM; Larkins NT; Mollica JP; Beard NA; Lamb GD J Physiol; 2009 Jan; 587(2):443-60. PubMed ID: 19029185 [TBL] [Abstract][Full Text] [Related]
34. A mechanism for both capacitative Ca(2+) entry and excitation-contraction coupled Ca(2+) release by the sarcoplasmic reticulum of skeletal muscle cells. Islam MN; Narayanan B; Ochs RS Exp Biol Med (Maywood); 2002 Jun; 227(6):425-31. PubMed ID: 12037132 [TBL] [Abstract][Full Text] [Related]
35. Calcium movement of sarcoplasmic reticulum from hindlimb suspended muscle. Yoshioka T; Shirota T; Tazoe T; Yamashita-Goto K Acta Astronaut; 1996 Feb; 38(3):209-12. PubMed ID: 11540780 [TBL] [Abstract][Full Text] [Related]
36. In vivo Ca Wakizaka M; Eshima H; Tanaka Y; Shirakawa H; Poole DC; Kano Y Physiol Rep; 2017 Mar; 5(5):. PubMed ID: 28292875 [TBL] [Abstract][Full Text] [Related]
37. Effects of elevated physiological temperatures on sarcoplasmic reticulum function in mechanically skinned muscle fibers of the rat. van der Poel C; Stephenson DG Am J Physiol Cell Physiol; 2007 Jul; 293(1):C133-41. PubMed ID: 17344316 [TBL] [Abstract][Full Text] [Related]
38. In vivo Ca2+ buffering capacity and microvascular oxygen pressures following muscle contractions in diabetic rat skeletal muscles: fiber-type specific effects. Eshima H; Poole DC; Kano Y Am J Physiol Regul Integr Comp Physiol; 2015 Jul; 309(2):R128-37. PubMed ID: 25947169 [TBL] [Abstract][Full Text] [Related]
39. How well do muscle biomechanics predict whole-animal locomotor performance? The role of Ca2+ handling. Seebacher F; Pollard SR; James RS J Exp Biol; 2012 Jun; 215(Pt 11):1847-53. PubMed ID: 22573763 [TBL] [Abstract][Full Text] [Related]