These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33596223)

  • 21. Age-related changes in trunk muscle activity and spinal and lower limb kinematics during gait.
    Crawford R; Gizzi L; Dieterich A; Ni Mhuiris Á; Falla D
    PLoS One; 2018; 13(11):e0206514. PubMed ID: 30408111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Older adults reduce the complexity and efficiency of neuromuscular control to preserve walking balance.
    da Silva Costa AA; Moraes R; Hortobágyi T; Sawers A
    Exp Gerontol; 2020 Oct; 140():111050. PubMed ID: 32750424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age-related changes in upper body contribution to braking forward locomotion in women.
    Rum L; Laudani L; Vannozzi G; Macaluso A
    Gait Posture; 2019 Feb; 68():81-87. PubMed ID: 30465946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asymmetric gait patterns alter the reactive control of intersegmental coordination patterns in the sagittal plane during walking.
    Liu C; Finley JM
    PLoS One; 2020; 15(5):e0224187. PubMed ID: 32437458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in the control of obstacle crossing in middle age become evident as gait task difficulty increases.
    Muir BC; Haddad JM; van Emmerik REA; Rietdyk S
    Gait Posture; 2019 May; 70():254-259. PubMed ID: 30909004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions.
    Ivanenko YP; Cappellini G; Poppele RE; Lacquaniti F
    Eur J Neurosci; 2008 Jun; 27(12):3351-68. PubMed ID: 18598271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in foot kinematics between young and older adults during walking.
    Arnold JB; Mackintosh S; Jones S; Thewlis D
    Gait Posture; 2014 Feb; 39(2):689-94. PubMed ID: 24183676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bracing the trunk and neck in young adults leads to a more aged-like gait.
    Russell DM; Kelleran KJ; Morrison S
    Gait Posture; 2016 Sep; 49():388-393. PubMed ID: 27500447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential activation of lumbar and sacral motor pools during walking at different speeds and slopes.
    Dewolf AH; Ivanenko YP; Zelik KE; Lacquaniti F; Willems PA
    J Neurophysiol; 2019 Aug; 122(2):872-887. PubMed ID: 31291150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. State-dependent corrective reactions for backward balance losses during human walking.
    Kagawa T; Ohta Y; Uno Y
    Hum Mov Sci; 2011 Dec; 30(6):1210-24. PubMed ID: 21704417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-related differences in pelvic and trunk motion and gait adaptability at different walking speeds.
    Gimmon Y; Riemer R; Rashed H; Shapiro A; Debi R; Kurz I; Melzer I
    J Electromyogr Kinesiol; 2015 Oct; 25(5):791-9. PubMed ID: 26091623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complexity, symmetry and variability of forward and backward walking at different speeds and transfer effects on forward walking: Implications for neural control.
    Walsh GS; Taylor Z
    J Biomech; 2019 Dec; 97():109377. PubMed ID: 31615643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of forward and backward gait characteristics between those with and without a history of breast cancer.
    Vallabhajosula S; Deaterly CD; Madzima TA
    Gait Posture; 2019 Oct; 74():162-168. PubMed ID: 31525654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle synergy differences between voluntary and reactive backward stepping.
    Wang S; Varas-Diaz G; Bhatt T
    Sci Rep; 2021 Jul; 11(1):15462. PubMed ID: 34326376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interlimb coordination during forward and backward walking in primary school-aged children.
    Meyns P; Desloovere K; Molenaers G; Swinnen SP; Duysens J
    PLoS One; 2013; 8(4):e62747. PubMed ID: 23626852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preferred and energetically optimal transition speeds during backward human locomotion.
    Hreljac A; Imamura R; Escamilla RF; Casebolt J; Sison M
    J Sports Sci Med; 2005 Dec; 4(4):446-54. PubMed ID: 24501559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-shoe plantar pressure distribution and lower extremity muscle activity patterns of backward compared to forward running on a treadmill.
    Sterzing T; Frommhold C; Rosenbaum D
    Gait Posture; 2016 May; 46():135-41. PubMed ID: 27131191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Could different directions of infant stepping be controlled by the same locomotor central pattern generator?
    Lamb T; Yang JF
    J Neurophysiol; 2000 May; 83(5):2814-24. PubMed ID: 10805679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.