BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 33596235)

  • 41. Biochemical analysis of SARS-CoV-2 Nsp13 helicase implicated in COVID-19 and factors that regulate its catalytic functions.
    Sommers JA; Loftus LN; Jones MP; Lee RA; Haren CE; Dumm AJ; Brosh RM
    J Biol Chem; 2023 Mar; 299(3):102980. PubMed ID: 36739951
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cheminformatics approach to identify andrographolide derivatives as dual inhibitors of methyltransferases (nsp14 and nsp16) of SARS-CoV-2.
    Thomas J; Ghosh A; Ranjan S; Satija J
    Sci Rep; 2024 Apr; 14(1):9801. PubMed ID: 38684706
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex.
    Chen J; Wang Q; Malone B; Llewellyn E; Pechersky Y; Maruthi K; Eng ET; Perry JK; Campbell EA; Shaw DE; Darst SA
    Nat Struct Mol Biol; 2022 Mar; 29(3):250-260. PubMed ID: 35260847
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Repurposing nonnucleoside antivirals against SARS-CoV2 NSP12 (RNA dependent RNA polymerase): In silico-molecular insight.
    Begum F; Srivastava AK; Ray U
    Biochem Biophys Res Commun; 2021 Sep; 571():26-31. PubMed ID: 34303192
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Force-dependent stimulation of RNA unwinding by SARS-CoV-2 nsp13 helicase.
    Mickolajczyk KJ; Shelton PMM; Grasso M; Cao X; Warrington SE; Aher A; Liu S; Kapoor TM
    Biophys J; 2021 Mar; 120(6):1020-1030. PubMed ID: 33340543
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Targeting novel structural and functional features of coronavirus protease nsp5 (3CL
    Roe MK; Junod NA; Young AR; Beachboard DC; Stobart CC
    J Gen Virol; 2021 Mar; 102(3):. PubMed ID: 33507143
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic conservation of SARS-CoV-2 RNA replication complex in globally circulating isolates and recently emerged variants from humans and minks suggests minimal pre-existing resistance to remdesivir.
    Martin R; Li J; Parvangada A; Perry J; Cihlar T; Mo H; Porter D; Svarovskaia E
    Antiviral Res; 2021 Apr; 188():105033. PubMed ID: 33549572
    [TBL] [Abstract][Full Text] [Related]  

  • 48.
    Gurung AB
    Gene Rep; 2020 Dec; 21():100860. PubMed ID: 32875166
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In Silico Insights towards the Identification of SARS-CoV-2 NSP13 Helicase Druggable Pockets.
    Ricci F; Gitto R; Pitasi G; De Luca L
    Biomolecules; 2022 Mar; 12(4):. PubMed ID: 35454070
    [TBL] [Abstract][Full Text] [Related]  

  • 50.
    Mateev E; Georgieva M; Zlatkov A
    Comb Chem High Throughput Screen; 2023; 26(6):1242-1250. PubMed ID: 35984023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Punicalagin as an allosteric NSP13 helicase inhibitor potently suppresses SARS-CoV-2 replication in vitro.
    Lu L; Peng Y; Yao H; Wang Y; Li J; Yang Y; Lin Z
    Antiviral Res; 2022 Oct; 206():105389. PubMed ID: 35985407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Overview of the Crystallized Structures of the SARS-CoV-2.
    Ionescu MI
    Protein J; 2020 Dec; 39(6):600-618. PubMed ID: 33098476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of FDA approved drugs against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and 3-chymotrypsin-like protease (3CLpro), drug repurposing approach.
    Molavi Z; Razi S; Mirmotalebisohi SA; Adibi A; Sameni M; Karami F; Niazi V; Niknam Z; Aliashrafi M; Taheri M; Ghafouri-Fard S; Jeibouei S; Mahdian S; Zali H; Ranjbar MM; Yazdani M
    Biomed Pharmacother; 2021 Jun; 138():111544. PubMed ID: 34311539
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface.
    Liang J; Karagiannis C; Pitsillou E; Darmawan KK; Ng K; Hung A; Karagiannis TC
    Comput Biol Chem; 2020 Dec; 89():107372. PubMed ID: 32911432
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities.
    Cannalire R; Cerchia C; Beccari AR; Di Leva FS; Summa V
    J Med Chem; 2022 Feb; 65(4):2716-2746. PubMed ID: 33186044
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deducing the Crystal Structure of MERS-CoV Helicase.
    Cui S; Hao W
    Methods Mol Biol; 2020; 2099():69-85. PubMed ID: 31883088
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Coronavirus helicase in replication.
    Grimes SL; Denison MR
    Virus Res; 2024 Aug; 346():199401. PubMed ID: 38796132
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phytochemicals from Selective Plants Have Promising Potential against SARS-CoV-2: Investigation and Corroboration through Molecular Docking, MD Simulations, and Quantum Computations.
    Kousar K; Majeed A; Yasmin F; Hussain W; Rasool N
    Biomed Res Int; 2020; 2020():6237160. PubMed ID: 33102585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15.
    Perry JK; Appleby TC; Bilello JP; Feng JY; Schmitz U; Campbell EA
    J Biol Chem; 2021 Oct; 297(4):101218. PubMed ID: 34562452
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Research Progress on Spike-Dependent SARS-CoV-2 Fusion Inhibitors and Small Molecules Targeting the S2 Subunit of Spike.
    Freidel MR; Armen RS
    Viruses; 2024 Apr; 16(5):. PubMed ID: 38793593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.