BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 33596432)

  • 1. Prefrontal NMDA-receptor antagonism disrupts encoding or consolidation but not retrieval of incidental context learning.
    Heroux NA; Horgan CJ; Stanton ME
    Behav Brain Res; 2021 May; 405():113175. PubMed ID: 33596432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of the immediate early genes c-Fos, Arc, Egr-1, and Npas4 during long-term memory formation in the context preexposure facilitation effect (CPFE).
    Heroux NA; Osborne BF; Miller LA; Kawan M; Buban KN; Rosen JB; Stanton ME
    Neurobiol Learn Mem; 2018 Jan; 147():128-138. PubMed ID: 29222058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonism of muscarinic acetylcholine receptors in medial prefrontal cortex disrupts the context preexposure facilitation effect.
    Robinson-Drummer PA; Heroux NA; Stanton ME
    Neurobiol Learn Mem; 2017 Sep; 143():27-35. PubMed ID: 28411153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medial prefrontal and ventral hippocampal contributions to incidental context learning and memory in adolescent rats.
    Heroux NA; Horgan CJ; Pinizzotto CC; Rosen JB; Stanton ME
    Neurobiol Learn Mem; 2019 Dec; 166():107091. PubMed ID: 31542328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA receptor antagonism disrupts acquisition and retention of the context preexposure facilitation effect in adolescent rats.
    Heroux NA; Robinson-Drummer PA; Rosen JB; Stanton ME
    Behav Brain Res; 2016 Mar; 301():168-77. PubMed ID: 26711910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential involvement of the medial prefrontal cortex across variants of contextual fear conditioning.
    Heroux NA; Robinson-Drummer PA; Sanders HR; Rosen JB; Stanton ME
    Learn Mem; 2017 Aug; 24(8):322-330. PubMed ID: 28716952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic rescue of neurocognitive insult following third-trimester equivalent alcohol exposure in rats.
    Heroux NA; Horgan CJ; Rosen JB; Stanton ME
    Neurobiol Learn Mem; 2019 Sep; 163():107030. PubMed ID: 31185278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Egr-1 increases in the prefrontal cortex following training in the context preexposure facilitation effect (CPFE) paradigm.
    Asok A; Schreiber WB; Jablonski SA; Rosen JB; Stanton ME
    Neurobiol Learn Mem; 2013 Nov; 106():145-53. PubMed ID: 23973447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMDA receptors and the ontogeny of post-shock and retention freezing during contextual fear conditioning.
    Miller LA; Heroux NA; Stanton ME
    Dev Psychobiol; 2020 Apr; 62(3):380-385. PubMed ID: 31621064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age and experience dependent changes in Egr-1 expression during the ontogeny of the context preexposure facilitation effect (CPFE).
    Robinson-Drummer PA; Chakraborty T; Heroux NA; Rosen JB; Stanton ME
    Neurobiol Learn Mem; 2018 Apr; 150():1-12. PubMed ID: 29452227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dorsal subiculum is required for contextual fear conditioning consolidation in rats.
    Melo MB; Favaro VM; Oliveira MGM
    Behav Brain Res; 2020 Jul; 390():112661. PubMed ID: 32407819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of dorsal hippocampus and basolateral amygdala NMDA receptors in the acquisition and retrieval of context and contextual fear memories.
    Matus-Amat P; Higgins EA; Sprunger D; Wright-Hardesty K; Rudy JW
    Behav Neurosci; 2007 Aug; 121(4):721-31. PubMed ID: 17663597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential involvement of amygdalar NMDA receptors across variants of contextual fear conditioning in adolescent rats.
    Miller LA; Heroux NA; Stanton ME
    Behav Brain Res; 2019 Jan; 356():236-242. PubMed ID: 30142395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neonatal ethanol exposure impairs long-term context memory formation and prefrontal immediate early gene expression in adolescent rats.
    Heroux NA; Robinson-Drummer PA; Kawan M; Rosen JB; Stanton ME
    Behav Brain Res; 2019 Feb; 359():386-395. PubMed ID: 30447241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogeny and neural substrates of the context preexposure facilitation effect.
    Schiffino FL; Murawski NJ; Rosen JB; Stanton ME
    Neurobiol Learn Mem; 2011 Feb; 95(2):190-8. PubMed ID: 21129493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors governing single-trial contextual fear conditioning in the weanling rat.
    Burman MA; Murawski NJ; Schiffino FL; Rosen JB; Stanton ME
    Behav Neurosci; 2009 Oct; 123(5):1148-52. PubMed ID: 19824781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of dorsal and ventral hippocampal muscarinic receptor activity in acquisition and retention of contextual fear conditioning.
    Pinizzotto CC; Heroux NA; Horgan CJ; Stanton ME
    Behav Neurosci; 2020 Oct; 134(5):460-470. PubMed ID: 33001682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Egr-1 mRNA expression patterns in the prefrontal cortex, hippocampus, and amygdala during variants of contextual fear conditioning in adolescent rats.
    Schreiber WB; Asok A; Jablonski SA; Rosen JB; Stanton ME
    Brain Res; 2014 Aug; 1576():63-72. PubMed ID: 24976583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholinergic mechanisms of the context preexposure facilitation effect in adolescent rats.
    Robinson-Drummer PA; Dokovna LB; Heroux NA; Stanton ME
    Behav Neurosci; 2016 Apr; 130(2):196-205. PubMed ID: 26866360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of age, post-training consolidation, and conjunctive associations in the ontogeny of the context preexposure facilitation effect.
    Jablonski SA; Schiffino FL; Stanton ME
    Dev Psychobiol; 2012 Nov; 54(7):714-22. PubMed ID: 22127879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.