These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1282 related articles for article (PubMed ID: 33596552)
1. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features. Hu X; Gong J; Zhou W; Li H; Wang S; Wei M; Peng W; Gu Y Phys Med Biol; 2021 Mar; 66(6):065015. PubMed ID: 33596552 [TBL] [Abstract][Full Text] [Related]
2. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images. Gong J; Liu J; Hao W; Nie S; Zheng B; Wang S; Peng W Eur Radiol; 2020 Apr; 30(4):1847-1855. PubMed ID: 31811427 [TBL] [Abstract][Full Text] [Related]
3. Computer-aided diagnosis of ground-glass opacity pulmonary nodules using radiomic features analysis. Gong J; Liu J; Hao W; Nie S; Wang S; Peng W Phys Med Biol; 2019 Jul; 64(13):135015. PubMed ID: 31167172 [TBL] [Abstract][Full Text] [Related]
4. Fusion of quantitative imaging features and serum biomarkers to improve performance of computer-aided diagnosis scheme for lung cancer: A preliminary study. Gong J; Liu JY; Jiang YJ; Sun XW; Zheng B; Nie SD Med Phys; 2018 Dec; 45(12):5472-5481. PubMed ID: 30317652 [TBL] [Abstract][Full Text] [Related]
5. Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan. Xia X; Gong J; Hao W; Yang T; Lin Y; Wang S; Peng W Front Oncol; 2020; 10():418. PubMed ID: 32296645 [TBL] [Abstract][Full Text] [Related]
6. The Value of Topological Radiomics Analysis in Predicting Malignant Risk of Pulmonary Ground-Glass Nodules: A Multi-Center Study. Wang M; Wei Y; Zhu M; Yu H; Guo C; Chen Z; Shi W; Ren J; Zhao W; Yang Z; Chen LA Technol Cancer Res Treat; 2024; 23():15330338241287089. PubMed ID: 39363876 [TBL] [Abstract][Full Text] [Related]
7. Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma. Huang H; Zheng D; Chen H; Wang Y; Chen C; Xu L; Li G; Wang Y; He X; Li W Med Phys; 2022 Oct; 49(10):6384-6394. PubMed ID: 35938604 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules. Gong J; Liu JY; Sun XW; Zheng B; Nie SD Phys Med Biol; 2018 Feb; 63(3):035036. PubMed ID: 29311420 [TBL] [Abstract][Full Text] [Related]
9. Marginal radiomics features as imaging biomarkers for pathological invasion in lung adenocarcinoma. Cho HH; Lee G; Lee HY; Park H Eur Radiol; 2020 May; 30(5):2984-2994. PubMed ID: 31965255 [TBL] [Abstract][Full Text] [Related]
10. Enhancing brain metastasis prediction in non-small cell lung cancer: a deep learning-based segmentation and CT radiomics-based ensemble learning model. Gong J; Wang T; Wang Z; Chu X; Hu T; Li M; Peng W; Feng F; Tong T; Gu Y Cancer Imaging; 2024 Jan; 24(1):1. PubMed ID: 38167564 [TBL] [Abstract][Full Text] [Related]
11. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Feng B; Chen X; Chen Y; Lu S; Liu K; Li K; Liu Z; Hao Y; Li Z; Zhu Z; Yao N; Liang G; Zhang J; Long W; Liu X Eur Radiol; 2020 Dec; 30(12):6497-6507. PubMed ID: 32594210 [TBL] [Abstract][Full Text] [Related]
12. Volumetric segmentation of ground glass nodule based on 3D attentional cascaded residual U-Net and conditional random field. Chen H; Liu J; Lu L; Wang T; Xu X; Chu A; Peng W; Gong J; Tang W; Gu Y Med Phys; 2022 Feb; 49(2):1097-1107. PubMed ID: 34951492 [TBL] [Abstract][Full Text] [Related]
13. Joint use of the radiomics method and frozen sections should be considered in the prediction of the final classification of peripheral lung adenocarcinoma manifesting as ground-glass nodules. Wang B; Tang Y; Chen Y; Hamal P; Zhu Y; Wang T; Sun Y; Lu Y; Bhuva MS; Meng X; Yang Y; Ai Z; Wu C; Sun X Lung Cancer; 2020 Jan; 139():103-110. PubMed ID: 31760351 [TBL] [Abstract][Full Text] [Related]
14. Baseline whole-lung CT features deriving from deep learning and radiomics: prediction of benign and malignant pulmonary ground-glass nodules. Huang W; Deng H; Li Z; Xiong Z; Zhou T; Ge Y; Zhang J; Jing W; Geng Y; Wang X; Tu W; Dong P; Liu S; Fan L Front Oncol; 2023; 13():1255007. PubMed ID: 37664069 [TBL] [Abstract][Full Text] [Related]
15. Changes in quantitative CT image features of ground-glass nodules in differentiating invasive pulmonary adenocarcinoma from benign and in situ lesions: histopathological comparisons. Zhang YP; Heuvelmans MA; Zhang H; Oudkerk M; Zhang GX; Xie XQ Clin Radiol; 2018 May; 73(5):504.e9-504.e16. PubMed ID: 29329732 [TBL] [Abstract][Full Text] [Related]
16. Combined model integrating deep learning, radiomics, and clinical data to classify lung nodules at chest CT. Lin CY; Guo SM; Lien JJ; Lin WT; Liu YS; Lai CH; Hsu IL; Chang CC; Tseng YL Radiol Med; 2024 Jan; 129(1):56-69. PubMed ID: 37971691 [TBL] [Abstract][Full Text] [Related]
17. An improved 3-D attention CNN with hybrid loss and feature fusion for pulmonary nodule classification. Huang YS; Wang TC; Huang SZ; Zhang J; Chen HM; Chang YC; Chang RF Comput Methods Programs Biomed; 2023 Feb; 229():107278. PubMed ID: 36463674 [TBL] [Abstract][Full Text] [Related]
18. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction. Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003 [TBL] [Abstract][Full Text] [Related]
19. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma. Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116 [TBL] [Abstract][Full Text] [Related]
20. Development, Validation, and Comparison of Image-Based, Clinical Feature-Based and Fusion Artificial Intelligence Diagnostic Models in Differentiating Benign and Malignant Pulmonary Ground-Glass Nodules. Wang X; Gao M; Xie J; Deng Y; Tu W; Yang H; Liang S; Xu P; Zhang M; Lu Y; Fu C; Li Q; Fan L; Liu S Front Oncol; 2022; 12():892890. PubMed ID: 35747810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]