These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33596744)

  • 21. [New theoretical analysis of cardiac function curves. 1. Venous return curve with ventricular function curve, derived from Guyton's formula].
    Kainuma M
    Masui; 1986 Feb; 35(2):330-3. PubMed ID: 3702051
    [No Abstract]   [Full Text] [Related]  

  • 22. Effects of hyperbaric oxygen on ventricular performance, pulmonary blood volume, and systemic and pulmonary vascular resistance.
    Abel FL; McNamee JE; Cone DL; Clarke D; Tao J
    Undersea Hyperb Med; 2000; 27(2):67-73. PubMed ID: 11011796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship of left atrial pressure and pulmonary venous flow velocities: importance of baseline mitral and pulmonary venous flow velocity patterns studied in lightly sedated dogs.
    Appleton CP; Gonzalez MS; Basnight MA
    J Am Soc Echocardiogr; 1994; 7(3 Pt 1):264-75. PubMed ID: 8060643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mean systemic filling pressure as a characteristic pressure for venous return.
    Versprille A; Jansen JR
    Pflugers Arch; 1985 Oct; 405(3):226-33. PubMed ID: 4069980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return.
    Berger D; Moller PW; Weber A; Bloch A; Bloechlinger S; Haenggi M; Sondergaard S; Jakob SM; Magder S; Takala J
    Am J Physiol Heart Circ Physiol; 2016 Sep; 311(3):H794-806. PubMed ID: 27422991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of Guyton's approach to the control of cardiac output for clinical fluid management.
    Magder S
    Ann Intensive Care; 2024 Jul; 14(1):105. PubMed ID: 38963533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator.
    Fresiello L; Rademakers F; Claus P; Ferrari G; Di Molfetta A; Meyns B
    PLoS One; 2017; 12(7):e0181879. PubMed ID: 28738087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pulsatility in ventricular assistance devices: A translational review focused on applied haemodynamics.
    Lescroart M; Hébert JL; Vincent F; Nguyen LS
    Arch Cardiovasc Dis; 2020; 113(6-7):461-472. PubMed ID: 32653240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of hemodynamics under left ventricular assist device.
    Kakino T; Saku K; Sakamoto T; Sakamoto K; Akashi T; Ikeda M; Ide T; Kishi T; Tsutsui H; Sunagawa K
    Am J Physiol Heart Circ Physiol; 2017 Jan; 312(1):H80-H88. PubMed ID: 27793856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Delayed reversal of impaired metabolic vasodilation in patients with end-stage heart failure during long-term circulatory support with a left ventricular assist device.
    Khan T; Levin HR; Oz MC; Katz SD
    J Heart Lung Transplant; 1997 Apr; 16(4):449-53. PubMed ID: 9154956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bench-to-bedside review: An approach to hemodynamic monitoring--Guyton at the bedside.
    Magder S
    Crit Care; 2012 Oct; 16(5):236. PubMed ID: 23106914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of the impact of venoarterial extracorporeal membrane oxygenation on hemodynamics.
    Sakamoto K; Saku K; Kishi T; Kakino T; Tanaka A; Sakamoto T; Ide T; Sunagawa K
    Am J Physiol Heart Circ Physiol; 2015 Apr; 308(8):H921-30. PubMed ID: 25659486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hemodynamic influence of LVAD on right ventricular failure.
    Kinoshita M; Long JW; Pantalos G; Burns GL; Olsen DB
    ASAIO Trans; 1990; 36(3):M538-41. PubMed ID: 2252745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CrossTalk proposal: Guyton's venous return curves should be taught.
    Andrew P
    J Physiol; 2013 Dec; 591(23):5791-3. PubMed ID: 24293525
    [No Abstract]   [Full Text] [Related]  

  • 35. Tidal variation of pulmonary blood flow and blood volume in piglets during mechanical ventilation during hyper-, normo- and hypovolaemia.
    Versprille A; Jansen JR
    Pflugers Arch; 1993 Aug; 424(3-4):255-65. PubMed ID: 8414915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps.
    Stephens AF; Stevens MC; Gregory SD; Kleinheyer M; Salamonsen RF
    Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computer model of the heart that obeys Starling's law.
    Goldstein LJ; Levenson H; Rypins EB
    Comput Methods Programs Biomed; 1990 Sep; 33(1):27-34. PubMed ID: 2261752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiovascular profile of 5 novel nitrate-esters: a comparative study with nitroglycerin in pigs with and without left ventricular dysfunction.
    van Woerkens LJ; van der Giessen WJ; Verdouw PD
    Br J Pharmacol; 1991 Sep; 104(1):7-14. PubMed ID: 1786521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ventricular interaction during mechanical ventilation in closed-chest anesthetized dogs.
    Mitchell JR; Sas R; Zuege DJ; Doig CJ; Smith ER; Whitelaw WA; Tyberg JV; Belenkie I
    Can J Cardiol; 2005 Jan; 21(1):73-81. PubMed ID: 15685307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new computer model of mitral valve hemodynamics during ventricular filling.
    Szabó G; Soans D; Graf A; J Beller C; Waite L; Hagl S
    Eur J Cardiothorac Surg; 2004 Aug; 26(2):239-47. PubMed ID: 15296878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.