BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33597241)

  • 1. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system.
    Yang D; Li L; Wei X; Wang Y; Zhou W; Kataura H; Xie S; Liu H
    Sci Adv; 2021 Feb; 7(8):. PubMed ID: 33597241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography.
    Liu H; Nishide D; Tanaka T; Kataura H
    Nat Commun; 2011; 2():309. PubMed ID: 21556063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-efficiency single-chirality separation of carbon nanotubes using temperature-controlled gel chromatography.
    Liu H; Tanaka T; Urabe Y; Kataura H
    Nano Lett; 2013 May; 13(5):1996-2003. PubMed ID: 23573837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics of Chirality Definable Growth of Single-Walled Carbon Nanotubes.
    Yoshikawa R; Hisama K; Ukai H; Takagi Y; Inoue T; Chiashi S; Maruyama S
    ACS Nano; 2019 Jun; 13(6):6506-6512. PubMed ID: 31117374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.
    Liu B; Wu F; Gui H; Zheng M; Zhou C
    ACS Nano; 2017 Jan; 11(1):31-53. PubMed ID: 28072518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chirality Distributions for Semiconducting Single-Walled Carbon Nanotubes Determined by Photoluminescence Spectroscopy.
    Irita M; Yamamoto T; Homma Y
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous chirality and enantiomer separation of metallic single-wall carbon nanotubes by gel column chromatography.
    Tanaka T; Urabe Y; Hirakawa T; Kataura H
    Anal Chem; 2015 Sep; 87(18):9467-72. PubMed ID: 26308487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical isomer separation of single-chirality carbon nanotubes using gel column chromatography.
    Liu H; Tanaka T; Kataura H
    Nano Lett; 2014 Nov; 14(11):6237-43. PubMed ID: 25347592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes.
    Kharlamova MV; Burdanova MG; Paukov MI; Kramberger C
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol-assisted gel chromatography for single-chirality separation of carbon nanotubes.
    Zeng X; Hu J; Zhang X; Zhou N; Zhou W; Liu H; Xie S
    Nanoscale; 2015 Oct; 7(39):16273-81. PubMed ID: 26376611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of local chirality during SWCNT growth: armchair versus zigzag nanotubes.
    Kim J; Page AJ; Irle S; Morokuma K
    J Am Chem Soc; 2012 Jun; 134(22):9311-9. PubMed ID: 22571240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT study of zigzag (n, 0) single-walled carbon nanotubes: (13)C NMR chemical shifts.
    Kupka T; Stachów M; Stobiński L; Kaminský J
    J Mol Graph Model; 2016 Jun; 67():14-9. PubMed ID: 27155813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length-Dependent Enantioselectivity of Carbon Nanotubes by Gel Chromatography.
    Wei X; Luo X; Li S; Zhou W; Xie S; Liu H
    ACS Nano; 2023 May; 17(9):8393-8402. PubMed ID: 37092905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chirality-Dependent and Intrinsic Auxeticity for Single-Walled Carbon Nanotubes.
    Zhang HN; Fan Y; Shen HS
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-walled carbon nanotube growth from chiral carbon nanorings: prediction of chirality and diameter influence on growth rates.
    Li HB; Page AJ; Irle S; Morokuma K
    J Am Chem Soc; 2012 Sep; 134(38):15887-96. PubMed ID: 22928987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An extended model for chirality selection in single-walled carbon nanotubes.
    Turaeva N; Kim Y; Kuljanishvili I
    Nanoscale Adv; 2023 Jul; 5(14):3684-3690. PubMed ID: 37441250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of surfactants and salt in aqueous two-phase separation of carbon nanotubes toward simple chirality isolation.
    Subbaiyan NK; Cambré S; Parra-Vasquez AN; Hároz EH; Doorn SK; Duque JG
    ACS Nano; 2014 Feb; 8(2):1619-28. PubMed ID: 24450507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes.
    Nißler R; Kurth L; Li H; Spreinat A; Kuhlemann I; Flavel BS; Kruss S
    Anal Chem; 2021 Apr; 93(16):6446-6455. PubMed ID: 33830740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of Retained Single-Walled Carbon Nanotubes in Gels.
    Zhou L; Liu X; Li H
    Langmuir; 2018 Oct; 34(40):12224-12232. PubMed ID: 30217110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.