BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 33597261)

  • 1. Analysis of recurrently protected genomic regions in cell-free DNA found in urine.
    Markus H; Zhao J; Contente-Cuomo T; Stephens MD; Raupach E; Odenheimer-Bergman A; Connor S; McDonald BR; Moore B; Hutchins E; McGilvrey M; de la Maza MC; Van Keuren-Jensen K; Pirrotte P; Goel A; Becerra C; Von Hoff DD; Celinski SA; Hingorani P; Murtaza M
    Sci Transl Med; 2021 Feb; 13(581):. PubMed ID: 33597261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time analysis of the cancer genome and fragmentome from plasma and urine cell-free DNA using nanopore sequencing.
    van der Pol Y; Tantyo NA; Evander N; Hentschel AE; Wever BM; Ramaker J; Bootsma S; Fransen MF; Lenos KJ; Vermeulen L; Schneiders FL; Bahce I; Nieuwenhuijzen JA; Steenbergen RD; Pegtel DM; Moldovan N; Mouliere F
    EMBO Mol Med; 2023 Dec; 15(12):e17282. PubMed ID: 37942753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of aberrant position and sequence of plasma DNA fragment ends in patients with cancer.
    Budhraja KK; McDonald BR; Stephens MD; Contente-Cuomo T; Markus H; Farooq M; Favaro PF; Connor S; Byron SA; Egan JB; Ernst B; McDaniel TK; Sekulic A; Tran NL; Prados MD; Borad MJ; Berens ME; Pockaj BA; LoRusso PM; Bryce A; Trent JM; Murtaza M
    Sci Transl Med; 2023 Jan; 15(678):eabm6863. PubMed ID: 36630480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the molecular composition and diagnostic potential of Mycobacterium tuberculosis urinary cell-free DNA using next-generation sequencing.
    Oreskovic A; Waalkes A; Holmes EA; Rosenthal CA; Wilson DPK; Shapiro AE; Drain PK; Lutz BR; Salipante SJ
    Int J Infect Dis; 2021 Nov; 112():330-337. PubMed ID: 34562627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered cfDNA fragmentation profile in hypomethylated regions as diagnostic markers in breast cancer.
    Wang J; Niu Y; Yang M; Shu L; Wang H; Wu X; He Y; Chen P; Zhong G; Tang Z; Zhang S; Guo Q; Wang Y; Yu L; Gou D
    Epigenetics Chromatin; 2023 Sep; 16(1):33. PubMed ID: 37740218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics, origin, and potential for cancer diagnostics of ultrashort plasma cell-free DNA.
    Hudecova I; Smith CG; Hänsel-Hertsch R; Chilamakuri CS; Morris JA; Vijayaraghavan A; Heider K; Chandrananda D; Cooper WN; Gale D; Garcia-Corbacho J; Pacey S; Baird RD; Rosenfeld N; Mouliere F
    Genome Res; 2022 Feb; 32(2):215-227. PubMed ID: 34930798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragmentation patterns and personalized sequencing of cell-free DNA in urine and plasma of glioma patients.
    Mouliere F; Smith CG; Heider K; Su J; van der Pol Y; Thompson M; Morris J; Wan JCM; Chandrananda D; Hadfield J; Grzelak M; Hudecova I; Couturier DL; Cooper W; Zhao H; Gale D; Eldridge M; Watts C; Brindle K; Rosenfeld N; Mair R
    EMBO Mol Med; 2021 Aug; 13(8):e12881. PubMed ID: 34291583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation.
    Ivanov M; Baranova A; Butler T; Spellman P; Mileyko V
    BMC Genomics; 2015; 16 Suppl 13(Suppl 13):S1. PubMed ID: 26693644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation-aware plasma cell-free DNA fragmentation analysis in open chromatin regions informs tissue of origin.
    Sun K; Jiang P; Cheng SH; Cheng THT; Wong J; Wong VWS; Ng SSM; Ma BBY; Leung TY; Chan SL; Mok TSK; Lai PBS; Chan HLY; Sun H; Chan KCA; Chiu RWK; Lo YMD
    Genome Res; 2019 Mar; 29(3):418-427. PubMed ID: 30808726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Preanalytical and Physiological Variables on Cell-Free DNA Fragmentation.
    van der Pol Y; Moldovan N; Verkuijlen S; Ramaker J; Boers D; Onstenk W; de Rooij J; Bahce I; Pegtel DM; Mouliere F
    Clin Chem; 2022 Jun; 68(6):803-813. PubMed ID: 35292813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomewide bisulfite sequencing reveals the origin and time-dependent fragmentation of urinary cfDNA.
    Cheng THT; Jiang P; Tam JCW; Sun X; Lee WS; Yu SCY; Teoh JYC; Chiu PKF; Ng CF; Chow KM; Szeto CC; Chan KCA; Chiu RWK; Lo YMD
    Clin Biochem; 2017 Jun; 50(9):496-501. PubMed ID: 28238813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive hybridization capture: Reliable detection of <1 copy/mL short cell-free DNA from large-volume urine samples.
    Oreskovic A; Lutz BR
    PLoS One; 2021; 16(2):e0247851. PubMed ID: 33635932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Free DNA Fragmentomics: The Novel Promising Biomarker.
    Qi T; Pan M; Shi H; Wang L; Bai Y; Ge Q
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of TERT promoter mutations in urinary cell-free DNA and sediment DNA for detection of bladder cancer.
    Stasik S; Salomo K; Heberling U; Froehner M; Sommer U; Baretton GB; Ehninger G; Wirth MP; Thiede C; Fuessel S
    Clin Biochem; 2019 Feb; 64():60-63. PubMed ID: 30528938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment Size-Based Enrichment of Viral Sequences in Plasma Cell-Free DNA.
    Phung Q; Lin MJ; Xie H; Greninger AL
    J Mol Diagn; 2022 May; 24(5):476-484. PubMed ID: 35569878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidimensional fragmentomic profiling of cell-free DNA released from patient-derived organoids.
    Kim J; Hong SP; Lee S; Lee W; Lee D; Kim R; Park YJ; Moon S; Park K; Cha B; Kim JI
    Hum Genomics; 2023 Oct; 17(1):96. PubMed ID: 37898819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragment Ends of Circulating Microbial DNA as Signatures for Pathogen Detection in Sepsis.
    Wang G; Lam WKJ; Ling L; Ma ML; Ramakrishnan S; Chan DCT; Lee WS; Cheng SH; Chan RWY; Yu SCY; Tse IOL; Wong WT; Jiang P; Chiu RWK; Allen Chan KC; Lo YMD
    Clin Chem; 2023 Feb; 69(2):189-201. PubMed ID: 36576350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circulating nuclear DNA structural features, origins, and complete size profile revealed by fragmentomics.
    Sanchez C; Roch B; Mazard T; Blache P; Dache ZAA; Pastor B; Pisareva E; Tanos R; Thierry AR
    JCI Insight; 2021 Apr; 6(7):. PubMed ID: 33571170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Single Molecule, Real-Time Sequencing and Nanopore Sequencing for Analysis of the Size, End-Motif, and Tissue-of-Origin of Long Cell-Free DNA in Plasma.
    Yu SCY; Deng J; Qiao R; Cheng SH; Peng W; Lau SL; Choy LYL; Leung TY; Wong J; Wong VW; Wong GLH; Jiang P; Chiu RWK; Chan KCA; Lo YMD
    Clin Chem; 2023 Feb; 69(2):168-179. PubMed ID: 36322427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-Free DNA Provides a Good Representation of the Tumor Genome Despite Its Biased Fragmentation Patterns.
    Ma X; Zhu L; Wu X; Bao H; Wang X; Chang Z; Shao YW; Wang Z
    PLoS One; 2017; 12(1):e0169231. PubMed ID: 28046008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.