These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33597516)

  • 1. Frontotemporal coordination predicts working memory performance and its local neural signatures.
    Rezayat E; Dehaqani MA; Clark K; Bahmani Z; Moore T; Noudoost B
    Nat Commun; 2021 Feb; 12(1):1103. PubMed ID: 33597516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copula regression analysis of simultaneously recorded frontal eye field and inferotemporal spiking activity during object-based working memory.
    Hu M; Clark KL; Gong X; Noudoost B; Li M; Moore T; Liang H
    J Neurosci; 2015 Jun; 35(23):8745-57. PubMed ID: 26063909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional signals in the prefrontal cortex and in area MT during a working memory for visual motion task.
    Zaksas D; Pasternak T
    J Neurosci; 2006 Nov; 26(45):11726-42. PubMed ID: 17093094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent spatial information in the frontal eye field during object-based short-term memory.
    Clark KL; Noudoost B; Moore T
    J Neurosci; 2012 Aug; 32(32):10907-14. PubMed ID: 22875925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Working Memory Enhances Cortical Representations via Spatially Specific Coordination of Spike Times.
    Bahmani Z; Daliri MR; Merrikhi Y; Clark K; Noudoost B
    Neuron; 2018 Feb; 97(4):967-979.e6. PubMed ID: 29398360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial working memory alters the efficacy of input to visual cortex.
    Merrikhi Y; Clark K; Albarran E; Parsa M; Zirnsak M; Moore T; Noudoost B
    Nat Commun; 2017 Apr; 8():15041. PubMed ID: 28447609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of prefrontal cortex inactivation on object responses of single neurons in the inferotemporal cortex during visual search.
    Monosov IE; Sheinberg DL; Thompson KG
    J Neurosci; 2011 Nov; 31(44):15956-61. PubMed ID: 22049438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trial-to-Trial Variability of Spiking Delay Activity in Prefrontal Cortex Constrains Burst-Coding Models of Working Memory.
    Li D; Constantinidis C; Murray JD
    J Neurosci; 2021 Oct; 41(43):8928-8945. PubMed ID: 34551937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory.
    Bastos AM; Loonis R; Kornblith S; Lundqvist M; Miller EK
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):1117-1122. PubMed ID: 29339471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.
    Liebe S; Hoerzer GM; Logothetis NK; Rainer G
    Nat Neurosci; 2012 Jan; 15(3):456-62, S1-2. PubMed ID: 22286175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistent spatial information in the FEF during object-based short-term memory does not contribute to task performance.
    Clark KL; Noudoost B; Moore T
    J Cogn Neurosci; 2014 Jun; 26(6):1292-9. PubMed ID: 24673408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive control during audiovisual working memory engages frontotemporal theta-band interactions.
    Daume J; Graetz S; Gruber T; Engel AK; Friese U
    Sci Rep; 2017 Oct; 7(1):12585. PubMed ID: 28974716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase of spike-LFP coordination in rat prefrontal cortex during working memory.
    Li S; Ouyang M; Liu T; Bai W; Yi H; Tian X
    Behav Brain Res; 2014 Mar; 261():297-304. PubMed ID: 24388980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory.
    Wang L; Li X; Hsiao SS; Lenz FA; Bodner M; Zhou YD; Fuster JM
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):E214-9. PubMed ID: 25540412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation of LFP Power and Tuning in the Frontal Cortex during Memory.
    Holmes CD; Papadimitriou C; Snyder LH
    J Neurosci; 2018 Sep; 38(38):8177-8186. PubMed ID: 30093534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic neuronal dynamics predict distinct functional roles during working memory.
    Wasmuht DF; Spaak E; Buschman TJ; Miller EK; Stokes MG
    Nat Commun; 2018 Aug; 9(1):3499. PubMed ID: 30158572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of simultaneously recorded spiking activity and local field potentials suggest that spatial selection emerges in the frontal eye field.
    Monosov IE; Trageser JC; Thompson KG
    Neuron; 2008 Feb; 57(4):614-25. PubMed ID: 18304489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociating the Contributions of Frontal Eye Field Activity to Spatial Working Memory and Motor Preparation.
    Jonikaitis D; Noudoost B; Moore T
    J Neurosci; 2023 Dec; 43(50):8681-8689. PubMed ID: 37871965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task.
    Rainer G; Miller EK
    Eur J Neurosci; 2002 Apr; 15(7):1244-54. PubMed ID: 11982635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.