These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33597556)

  • 1. Use Internet search data to accurately track state level influenza epidemics.
    Yang S; Ning S; Kou SC
    Sci Rep; 2021 Feb; 11(1):4023. PubMed ID: 33597556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate regional influenza epidemics tracking using Internet search data.
    Ning S; Yang S; Kou SC
    Sci Rep; 2019 Mar; 9(1):5238. PubMed ID: 30918276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate estimation of influenza epidemics using Google search data via ARGO.
    Yang S; Santillana M; Kou SC
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14473-8. PubMed ID: 26553980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of daily Internet search query data improves real-time projections of influenza epidemics.
    Zimmer C; Leuba SI; Yaesoubi R; Cohen T
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30305417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting seasonal influenza epidemics using cross-hemisphere influenza surveillance data and local internet query data.
    Zhang Y; Yakob L; Bonsall MB; Hu W
    Sci Rep; 2019 Mar; 9(1):3262. PubMed ID: 30824756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subregional Nowcasts of Seasonal Influenza Using Search Trends.
    Kandula S; Hsu D; Shaman J
    J Med Internet Res; 2017 Nov; 19(11):e370. PubMed ID: 29109069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using electronic health records and Internet search information for accurate influenza forecasting.
    Yang S; Santillana M; Brownstein JS; Gray J; Richardson S; Kou SC
    BMC Infect Dis; 2017 May; 17(1):332. PubMed ID: 28482810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using networks to combine "big data" and traditional surveillance to improve influenza predictions.
    Davidson MW; Haim DA; Radin JM
    Sci Rep; 2015 Jan; 5():8154. PubMed ID: 25634021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring seasonal influenza epidemics by using internet search data with an ensemble penalized regression model.
    Guo P; Zhang J; Wang L; Yang S; Luo G; Deng C; Wen Y; Zhang Q
    Sci Rep; 2017 Apr; 7():46469. PubMed ID: 28422149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales.
    Olson DR; Konty KJ; Paladini M; Viboud C; Simonsen L
    PLoS Comput Biol; 2013; 9(10):e1003256. PubMed ID: 24146603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Google Flu Trends Spatial Variability Validated Against Emergency Department Influenza-Related Visits.
    Klembczyk JJ; Jalalpour M; Levin S; Washington RE; Pines JM; Rothman RE; Dugas AF
    J Med Internet Res; 2016 Jun; 18(6):e175. PubMed ID: 27354313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches.
    Lu FS; Hattab MW; Clemente CL; Biggerstaff M; Santillana M
    Nat Commun; 2019 Jan; 10(1):147. PubMed ID: 30635558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cumulative query method for influenza surveillance using search engine data.
    Seo DW; Jo MW; Sohn CH; Shin SY; Lee J; Yu M; Kim WY; Lim KS; Lee SI
    J Med Internet Res; 2014 Dec; 16(12):e289. PubMed ID: 25517353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring epidemic alert levels by analyzing Internet search volume.
    Zhou X; Li Q; Zhu Z; Zhao H; Tang H; Feng Y
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):446-52. PubMed ID: 23192470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting influenza epidemics using search engine query data.
    Ginsberg J; Mohebbi MH; Patel RS; Brammer L; Smolinski MS; Brilliant L
    Nature; 2009 Feb; 457(7232):1012-4. PubMed ID: 19020500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. National and local influenza surveillance through Twitter: an analysis of the 2012-2013 influenza epidemic.
    Broniatowski DA; Paul MJ; Dredze M
    PLoS One; 2013; 8(12):e83672. PubMed ID: 24349542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Google Flu Trends.
    Ortiz JR; Zhou H; Shay DK; Neuzil KM; Fowlkes AL; Goss CH
    PLoS One; 2011 Apr; 6(4):e18687. PubMed ID: 21556151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COVID-19 forecasts using Internet search information in the United States.
    Ma S; Yang S
    Sci Rep; 2022 Jul; 12(1):11539. PubMed ID: 35798774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surveilling Influenza Incidence With Centers for Disease Control and Prevention Web Traffic Data: Demonstration Using a Novel Dataset.
    Caldwell WK; Fairchild G; Del Valle SY
    J Med Internet Res; 2020 Jul; 22(7):e14337. PubMed ID: 32437327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Web and social media for influenza surveillance.
    Corley CD; Cook DJ; Mikler AR; Singh KP
    Adv Exp Med Biol; 2010; 680():559-64. PubMed ID: 20865540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.