BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 33597595)

  • 1. Ex vivo modelling of PD-1/PD-L1 immune checkpoint blockade under acute, chronic, and exhaustion-like conditions of T-cell stimulation.
    Roberts A; Bentley L; Tang T; Stewart F; Pallini C; Juvvanapudi J; Wallace GR; Cooper AJ; Scott A; Thickett D; Lugg ST; Bancroft H; Hemming B; Ferris C; Langman G; Robinson A; Chapman J; Naidu B; Pinkney T; Taylor GS; Brock K; Stamataki Z; Brady CA; Curnow SJ; Gordon J; Qureshi O; Barnes NM
    Sci Rep; 2021 Feb; 11(1):4030. PubMed ID: 33597595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical and Immunological Characterization and
    Hutchins B; Starling GC; McCoy MA; Herzyk D; Poulet FM; Dulos J; Liu L; Kang SP; Fayadat-Dilman L; Hsieh M; Andrews CL; Ayanoglu G; Cullen C; Malefyt RW; Kastelein RA; Saux SL; Lee J; Li S; Malashock D; Sadekova S; Soder G; van Eenennaam H; Willingham A; Yu Y; Streuli M; Carven GJ; van Elsas A
    Mol Cancer Ther; 2020 Jun; 19(6):1298-1307. PubMed ID: 32229606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Small Molecule Antagonist of PD-1/PD-L1 Interactions Acts as an Immune Checkpoint Inhibitor for NSCLC and Melanoma Immunotherapy.
    Wang Y; Gu T; Tian X; Li W; Zhao R; Yang W; Gao Q; Li T; Shim JH; Zhang C; Liu K; Lee MH
    Front Immunol; 2021; 12():654463. PubMed ID: 34054817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indirect Impact of PD-1/PD-L1 Blockade on a Murine Model of NK Cell Exhaustion.
    Alvarez M; Simonetta F; Baker J; Morrison AR; Wenokur AS; Pierini A; Berraondo P; Negrin RS
    Front Immunol; 2020; 11():7. PubMed ID: 32117218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Exhaustion of HBV-Specific CD8 T Cells Impedes PD-L1 Blockade Efficacy in Chronic HBV Infection.
    Ferrando-Martinez S; Snell Bennett A; Lino E; Gehring AJ; Feld J; Janssen HLA; Robbins SH
    Front Immunol; 2021; 12():648420. PubMed ID: 34589081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of T-cell-mediated immune response via the PD-1/ PD-L1 axis in cholangiocarcinoma cells.
    Suriyo T; Fuangthong M; Artpradit C; Ungtrakul T; Sricharunrat T; Taha F; Satayavivad J
    Eur J Pharmacol; 2021 Apr; 897():173960. PubMed ID: 33617828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blockade of PD-1 and TIM-3 immune checkpoints fails to restore the function of exhausted CD8
    Rezazadeh H; Astaneh M; Tehrani M; Hossein-Nataj H; Zaboli E; Shekarriz R; Asgarian-Omran H
    Immunol Res; 2020 Oct; 68(5):269-279. PubMed ID: 32710227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sanguisorbae Radix Suppresses Colorectal Tumor Growth Through PD-1/PD-L1 Blockade and Synergistic Effect With Pembrolizumab in a Humanized PD-L1-Expressing Colorectal Cancer Mouse Model.
    Lee EJ; Kim JH; Kim TI; Kim YJ; Pak ME; Jeon CH; Park YJ; Li W; Kim YS; Choi JG; Chung HS
    Front Immunol; 2021; 12():737076. PubMed ID: 34659228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gamma-Chain Receptor Cytokines & PD-1 Manipulation to Restore HCV-Specific CD8
    Peña-Asensio J; Calvo H; Torralba M; Miquel J; Sanz-de-Villalobos E; Larrubia JR
    Cells; 2021 Mar; 10(3):. PubMed ID: 33802622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PD-1 blockade counteracts post-COVID-19 immune abnormalities and stimulates the anti-SARS-CoV-2 immune response.
    Loretelli C; Abdelsalam A; D'Addio F; Ben Nasr M; Assi E; Usuelli V; Maestroni A; Seelam AJ; Ippolito E; Di Maggio S; Loreggian L; Radovanovic D; Vanetti C; Yang J; El Essawy B; Rossi A; Pastore I; Montefusco L; Lunati ME; Bolla AM; Biasin M; Antinori S; Santus P; Riva A; Zuccotti GV; Galli M; Rusconi S; Fiorina P
    JCI Insight; 2021 Dec; 6(24):. PubMed ID: 34784300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune checkpoint expression on peripheral cytotoxic lymphocytes in cervical cancer patients: moving beyond the PD-1/PD-L1 axis.
    Solorzano-Ibarra F; Alejandre-Gonzalez AG; Ortiz-Lazareno PC; Bastidas-Ramirez BE; Zepeda-Moreno A; Tellez-Bañuelos MC; Banu N; Carrillo-Garibaldi OJ; Chavira-Alvarado A; Bueno-Topete MR; Del Toro-Arreola S; Haramati J
    Clin Exp Immunol; 2021 Apr; 204(1):78-95. PubMed ID: 33306195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma.
    Langhans B; Nischalke HD; Krämer B; Dold L; Lutz P; Mohr R; Vogt A; Toma M; Eis-Hübinger AM; Nattermann J; Strassburg CP; Gonzalez-Carmona MA; Spengler U
    Cancer Immunol Immunother; 2019 Dec; 68(12):2055-2066. PubMed ID: 31724091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma.
    Mahoney KM; Freeman GJ; McDermott DF
    Clin Ther; 2015 Apr; 37(4):764-82. PubMed ID: 25823918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PD-1/PD-L1 checkpoint inhibitors in combination with olaparib display antitumor activity in ovarian cancer patient-derived three-dimensional spheroid cultures.
    Appleton KM; Elrod AK; Lassahn KA; Shuford S; Holmes LM; DesRochers TM
    Cancer Immunol Immunother; 2021 Mar; 70(3):843-856. PubMed ID: 33492447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T cell checkpoint regulators in the heart.
    Grabie N; Lichtman AH; Padera R
    Cardiovasc Res; 2019 Apr; 115(5):869-877. PubMed ID: 30721928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential Anti-PD1 Therapy Following Dendritic Cell Vaccination Improves Survival in a HER2 Mammary Carcinoma Model and Identifies a Critical Role for CD4 T Cells in Mediating the Response.
    Kodumudi KN; Ramamoorthi G; Snyder C; Basu A; Jia Y; Awshah S; Beyer AP; Wiener D; Lam L; Zhang H; Greene MI; Costa RLB; Czerniecki BJ
    Front Immunol; 2019; 10():1939. PubMed ID: 31475002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential impact of PD-1 and/or interleukin-10 blockade on HIV-1-specific CD4 T cell and antigen-presenting cell functions.
    Porichis F; Hart MG; Zupkosky J; Barblu L; Kwon DS; McMullen A; Brennan T; Ahmed R; Freeman GJ; Kavanagh DG; Kaufmann DE
    J Virol; 2014 Mar; 88(5):2508-18. PubMed ID: 24352453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting PD-1 and Tim-3 Pathways to Reverse CD8 T-Cell Exhaustion and Enhance Ex Vivo T-Cell Responses to Autologous Dendritic/Tumor Vaccines.
    Liu J; Zhang S; Hu Y; Yang Z; Li J; Liu X; Deng L; Wang Y; Zhang X; Jiang T; Lu X
    J Immunother; 2016 May; 39(4):171-80. PubMed ID: 27070448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune Profile Analysis in Peripheral Blood and Tumor in Patients with Malignant Melanoma.
    Saito R; Sawada Y; Nakamura M
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human brain endothelial cells endeavor to immunoregulate CD8 T cells via PD-1 ligand expression in multiple sclerosis.
    Pittet CL; Newcombe J; Prat A; Arbour N
    J Neuroinflammation; 2011 Nov; 8():155. PubMed ID: 22067141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.