These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33597931)

  • 1. Re-sensitization of
    Faulkner V; Cox AA; Goh S; van Bohemen A; Gibson AJ; Liebster O; Wren BW; Willcocks S; Kendall SL
    Front Microbiol; 2020; 11():619427. PubMed ID: 33597931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the CRISPRi system to repress sepF expression in Mycobacterium smegmatis.
    Xiao J; Jia H; Pan L; Li Z; Lv L; Du B; Zhang L; Du F; Huang Y; Cao T; Sun Q; Wei R; Xing A; Zhang Z
    Infect Genet Evol; 2019 Aug; 72():183-190. PubMed ID: 31242975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR Interference-Mediated Silencing of the
    Yuliani Y; Ilmi AFN; Petsong S; Sawatpanich A; Chirakul S; Chatsuwan T; Palaga T; Rotcheewaphan S
    Antibiotics (Basel); 2024 May; 13(6):. PubMed ID: 38927150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene silencing by CRISPR interference in mycobacteria.
    Choudhary E; Thakur P; Pareek M; Agarwal N
    Nat Commun; 2015 Feb; 6():6267. PubMed ID: 25711368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a mycobacterial CRISPRi platform in Mycobacterium abscessus and demonstration of the essentiality of ftsZ
    Gupta R; Rohde KH
    Tuberculosis (Edinb); 2023 Jan; 138():102292. PubMed ID: 36495774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physiological effect of rimI/rimJ silencing by CRISPR interference in Mycobacterium smegmatis mc
    Pal M; Yadav VK; Pal P; Agarwal N; Rao A
    Arch Microbiol; 2023 Apr; 205(5):211. PubMed ID: 37119317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Construction of EF-G knockdown strain of
    DI Y; Bai J; Chi M; Fan W; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2022 Mar; 38(3):1050-1060. PubMed ID: 35355473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of CRISPR interference to investigate the contribution of genes to pathogenesis in a macrophage model of Mycobacterium tuberculosis infection.
    Cheung CY; McNeil MB; Cook GM
    J Antimicrob Chemother; 2022 Feb; 77(3):615-619. PubMed ID: 34850009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a novel CRISPRi-based tool for silencing of multiple genes in Mycobacterium tuberculosis.
    Agarwal N
    Plasmid; 2020 Jul; 110():102515. PubMed ID: 32535164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Transcription Elongation Factor GreA in
    Feng S; Liu Y; Liang W; El-Sayed Ahmed MAE; Zhao Z; Shen C; Roberts AP; Liang L; Liao L; Zhong Z; Guo Z; Yang Y; Wen X; Chen H; Tian GB
    Front Microbiol; 2020; 11():413. PubMed ID: 32265867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of rifampicin-inactivating mono-ADP-ribosyl transferase gene of
    Swaminath S; Pradhan A; Nair RR; Ajitkumar P
    Curr Res Microb Sci; 2022; 3():100142. PubMed ID: 35909599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CRISPR Interference System for Efficient and Rapid Gene Knockdown in Caulobacter crescentus.
    Guzzo M; Castro LK; Reisch CR; Guo MS; Laub MT
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Mycobacterium smegmatis deficient in ADP-ribosyltransferase as surrogate for Mycobacterium tuberculosis in drug testing and mutation analysis.
    Agrawal P; Miryala S; Varshney U
    PLoS One; 2015; 10(4):e0122076. PubMed ID: 25874691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591.
    Rominski A; Roditscheff A; Selchow P; Böttger EC; Sander P
    J Antimicrob Chemother; 2017 Feb; 72(2):376-384. PubMed ID: 27999011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR Interference (CRISPRi) for Targeted Gene Silencing in Mycobacteria.
    Wong AI; Rock JM
    Methods Mol Biol; 2021; 2314():343-364. PubMed ID: 34235662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system.
    Singh AK; Carette X; Potluri LP; Sharp JD; Xu R; Prisic S; Husson RN
    Nucleic Acids Res; 2016 Oct; 44(18):e143. PubMed ID: 27407107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of rifampicin by Mycobacterium aurum, Mycobacterium smegmatis and Mycobacterium tuberculosis.
    Piddock LJ; Williams KJ; Ricci V
    J Antimicrob Chemother; 2000 Feb; 45(2):159-65. PubMed ID: 10660497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of a New Potassium Channel Increases Rifampicin Resistance and Induces Collateral Sensitivity to Hydrophilic Antibiotics in
    Do TT; Rodríguez-Beltran J; Cebrián-Sastre E; Rodríguez-Rojas A; Castañeda-García A; Blázquez J
    Antibiotics (Basel); 2022 Apr; 11(4):. PubMed ID: 35453260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance.
    Levin ME; Hatfull GF
    Mol Microbiol; 1993 Apr; 8(2):277-85. PubMed ID: 8316080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.