These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3359805)

  • 1. Fluorescence quenching studies of the structures of calf gamma-II, III, and IV crystallins.
    Phillips SR; Borkman RF
    Curr Eye Res; 1988 Jan; 7(1):55-9. PubMed ID: 3359805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins.
    Phillips SR; Wilson LJ; Borkman RF
    Curr Eye Res; 1986 Aug; 5(8):611-9. PubMed ID: 3757547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quenching of tryptophan fluorescence in bovine lens proteins by acrylamide and iodide.
    Augusteyn RC; Putilina T; Seifert R
    Curr Eye Res; 1988 Mar; 7(3):237-45. PubMed ID: 3359809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accessibilities of the sulfhydryl groups of native and photooxidized lens crystallins: a fluorescence lifetime and quenching study.
    Andley UP; Clark BA
    Biochemistry; 1988 Jan; 27(2):810-20. PubMed ID: 3349065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium iodide and acrylamide fluorescence quenching studies on gamma-crystallins of human lenses in development and aging.
    Li S; Wu K; Liang S; Pan S
    Yan Ke Xue Bao; 1992 Sep; 8(3):104-7. PubMed ID: 1303864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorescence measurements of calf gamma-II, III, and IV crystallins at 77 and 293 K.
    Berger JW; Vanderkooi JM; Tallmadge DH; Borkman RF
    Exp Eye Res; 1989 May; 48(5):627-39. PubMed ID: 2737261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acrylamide and iodide fluorescence quenching studies on whole human lenses and their protein extracts.
    Lerman S; Moran M
    Curr Eye Res; 1988 Apr; 7(4):403-10. PubMed ID: 3371076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and stability of gamma-crystallins. II. Differences in microenvironments and spatial arrangements of cysteine residues.
    Mandal K; Bose SK; Chakrabarti B; Siezen RJ
    Biochim Biophys Acta; 1987 Feb; 911(3):277-84. PubMed ID: 3814605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and stability of gamma-crystallins. I. Spectroscopic evaluation of secondary and tertiary structure in solution.
    Mandal K; Bose SK; Chakrabarti B; Siezen RJ
    Biochim Biophys Acta; 1985 Nov; 832(2):156-64. PubMed ID: 4063374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the microenvironments of tryptophan residues in the monomeric crystallins of the bovine lens.
    Augusteyn RC; Chandrasekher G; Ghiggino KP; Vassett P
    Biochim Biophys Acta; 1994 Mar; 1205(1):89-96. PubMed ID: 8142489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and stability of gamma-crystallins: tryptophan, tyrosine, and cysteine accessibility.
    Mandal K; Chakrabarti B
    Biochemistry; 1988 Jun; 27(12):4564-71. PubMed ID: 3166999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan fluorescence quenching in rabbit skeletal myosin rod.
    Chang YC; Ludescher RD
    Biophys Chem; 1993 Nov; 48(1):49-59. PubMed ID: 8257767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of lens alpha-crystallin tryptophan microenvironments by room temperature phosphorescence spectroscopy.
    Berger JW; Vanderkooi JM
    Biochemistry; 1989 Jun; 28(13):5501-8. PubMed ID: 2775720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the location of aromatic amino acids in alpha-crystallin.
    Augusteyn RC; Ghiggino KP; Putilina T
    Biochim Biophys Acta; 1993 Mar; 1162(1-2):61-71. PubMed ID: 8448196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rates of photolysis of the four individual tryptophan residues in UV exposed calf gamma-II crystallin.
    Tallmadge DH; Borkman RF
    Photochem Photobiol; 1990 Mar; 51(3):363-8. PubMed ID: 2356232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage.
    Chen J; Callis PR; King J
    Biochemistry; 2009 May; 48(17):3708-16. PubMed ID: 19358562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light scattering and photocrosslinking in the calf lens crystallins gamma-II, III and IV.
    Walker ML; Borkman RF
    Exp Eye Res; 1989 Mar; 48(3):375-83. PubMed ID: 2924821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR analyses of the cold cataract. II. Studies on protein solutions.
    Lerman S; Megaw JM; Gardner K; Ashley D; Long RC; Goldstein JH
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):99-105. PubMed ID: 6826319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence quenching of the buried tryptophan residue of cod parvalbumin.
    Eftink MR; Hagaman KA
    Biophys Chem; 1985 Aug; 22(3):173-80. PubMed ID: 4052574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The accessibility of the active site and conformation states of the beta 2 subunit of tryptophan synthase studied by fluorescence quenching.
    Lane AN
    Eur J Biochem; 1983 Jul; 133(3):531-8. PubMed ID: 6345154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.