These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3359806)

  • 1. Front surface fluorometric study of lens insoluble proteins.
    Liang JN; Pelletier MR; Chylack LT
    Curr Eye Res; 1988 Jan; 7(1):61-7. PubMed ID: 3359806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Front surface fluorescence measurements of the age-related change in the human lens.
    Liang JN
    Curr Eye Res; 1990 May; 9(5):399-405. PubMed ID: 2383996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein changes in the human lens during development of senile nuclear cataract.
    Kramps HA; Hoenders HJ; Wollensak J
    Biochim Biophys Acta; 1976 May; 434(1):32-43. PubMed ID: 938670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses.
    Bessems GJ; Keizer E; Wollensak J; Hoenders HJ
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of aging and cataract formation on the trypsin inhibitor activity of human lens.
    Srivastava OP; Ortwerth BJ
    Exp Eye Res; 1989 Jan; 48(1):25-36. PubMed ID: 2920782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age dependence and distribution of green and blue fluorophores in human lens homogenates.
    Yappert MC; Lal S; Borchman D
    Invest Ophthalmol Vis Sci; 1992 Dec; 33(13):3555-60. PubMed ID: 1464501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disulfide cross-linking of urea-insoluble proteins in rabbit lenses treated with hyperbaric oxygen.
    Padgaonkar V; Giblin FJ; Reddy VN
    Exp Eye Res; 1989 Nov; 49(5):887-99. PubMed ID: 2591503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunochemical detection of dicarbonyl-derived imidazolium protein crosslinks in human lenses.
    Shamsi FA; Nagaraj RH
    Curr Eye Res; 1999 Sep; 19(3):276-84. PubMed ID: 10487968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein associated with human lens 'native' membrane during aging and cataract formation.
    Chandrasekher G; Cenedella RJ
    Exp Eye Res; 1995 Jun; 60(6):707-17. PubMed ID: 7641853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha neoprotein molecules in normal lenses from animals of different ages and in cataractous lenses.
    Manski W; Malinowski K
    Exp Eye Res; 1985 Feb; 40(2):179-90. PubMed ID: 3884353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycation of crystallins in lenses from aging and diabetic individuals.
    van Boekel MA; Hoenders HJ
    FEBS Lett; 1992 Dec; 314(1):1-4. PubMed ID: 1451795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathionylation of lens proteins through the formation of thioether bond.
    Linetsky M; LeGrand RD
    Mol Cell Biochem; 2005 Apr; 272(1-2):133-44. PubMed ID: 16010980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoreactions of human lens monomeric crystallins.
    Andley UP; Clark BA
    Biochim Biophys Acta; 1989 Aug; 997(3):284-91. PubMed ID: 2548626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free epsilon amino groups and 5-hydroxymethylfurfural contents in clear and cataractous human lenses.
    Rao GN; Cotlier E
    Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):98-102. PubMed ID: 3941040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.