These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3359809)

  • 1. Quenching of tryptophan fluorescence in bovine lens proteins by acrylamide and iodide.
    Augusteyn RC; Putilina T; Seifert R
    Curr Eye Res; 1988 Mar; 7(3):237-45. PubMed ID: 3359809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins.
    Phillips SR; Wilson LJ; Borkman RF
    Curr Eye Res; 1986 Aug; 5(8):611-9. PubMed ID: 3757547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the microenvironments of tryptophan residues in the monomeric crystallins of the bovine lens.
    Augusteyn RC; Chandrasekher G; Ghiggino KP; Vassett P
    Biochim Biophys Acta; 1994 Mar; 1205(1):89-96. PubMed ID: 8142489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence quenching studies of the structures of calf gamma-II, III, and IV crystallins.
    Phillips SR; Borkman RF
    Curr Eye Res; 1988 Jan; 7(1):55-9. PubMed ID: 3359805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of lens alpha-crystallin tryptophan microenvironments by room temperature phosphorescence spectroscopy.
    Berger JW; Vanderkooi JM
    Biochemistry; 1989 Jun; 28(13):5501-8. PubMed ID: 2775720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accessibilities of the sulfhydryl groups of native and photooxidized lens crystallins: a fluorescence lifetime and quenching study.
    Andley UP; Clark BA
    Biochemistry; 1988 Jan; 27(2):810-20. PubMed ID: 3349065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the location of aromatic amino acids in alpha-crystallin.
    Augusteyn RC; Ghiggino KP; Putilina T
    Biochim Biophys Acta; 1993 Mar; 1162(1-2):61-71. PubMed ID: 8448196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium iodide and acrylamide fluorescence quenching studies on gamma-crystallins of human lenses in development and aging.
    Li S; Wu K; Liang S; Pan S
    Yan Ke Xue Bao; 1992 Sep; 8(3):104-7. PubMed ID: 1303864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and stability of gamma-crystallins: tryptophan, tyrosine, and cysteine accessibility.
    Mandal K; Chakrabarti B
    Biochemistry; 1988 Jun; 27(12):4564-71. PubMed ID: 3166999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondrial F1-ATPase. A powerful probe for phosphate and nucleotide interactions.
    Divita G; Di Pietro A; Deléage G; Roux B; Gautheron DC
    Biochemistry; 1991 Apr; 30(13):3256-62. PubMed ID: 1826214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotin binding changes the conformation and decreases tryptophan accessibility of streptavidin.
    Kurzban GP; Gitlin G; Bayer EA; Wilchek M; Horowitz PM
    J Protein Chem; 1990 Dec; 9(6):673-82. PubMed ID: 2073320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acrylamide and iodide fluorescence quenching studies on whole human lenses and their protein extracts.
    Lerman S; Moran M
    Curr Eye Res; 1988 Apr; 7(4):403-10. PubMed ID: 3371076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence quenching studies of bovine growth hormone in several conformational states.
    Havel HA; Kauffman EW; Elzinga PA
    Biochim Biophys Acta; 1988 Jul; 955(2):154-63. PubMed ID: 3395621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the tryptophan environments of interleukins 1 alpha and 1 beta by fluorescence quenching and lifetime measurements.
    Epps DE; Yem AW; Deibel MR
    Arch Biochem Biophys; 1989 Nov; 275(1):82-91. PubMed ID: 2817905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inaccessibility of tryptophan residues of recombinant human renin to quenching agents.
    Epps DE; Poorman R; Hui J; Carlson W; Heinrikson R
    J Biol Chem; 1987 Aug; 262(22):10570-3. PubMed ID: 3301839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorescence measurements of calf gamma-II, III, and IV crystallins at 77 and 293 K.
    Berger JW; Vanderkooi JM; Tallmadge DH; Borkman RF
    Exp Eye Res; 1989 May; 48(5):627-39. PubMed ID: 2737261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of the highly efficient quenching of tryptophan fluorescence in human gammaD-crystallin.
    Chen J; Flaugh SL; Callis PR; King J
    Biochemistry; 2006 Sep; 45(38):11552-63. PubMed ID: 16981715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage.
    Chen J; Callis PR; King J
    Biochemistry; 2009 May; 48(17):3708-16. PubMed ID: 19358562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of tryptophan residues of cytochrome P450scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide.
    Lange R; Anzenbacher P; Müller S; Maurin L; Balny C
    Eur J Biochem; 1994 Dec; 226(3):963-70. PubMed ID: 7813487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shielding of tryptophan residues of avidin by the binding of biotin.
    Kurzban GP; Gitlin G; Bayer EA; Wilchek M; Horowitz PM
    Biochemistry; 1989 Oct; 28(21):8537-42. PubMed ID: 2605203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.