These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 33598104)
21. Effect of the antifreeze protein from the arctic yeast Leucosporidium sp. AY30 on cryopreservation of the marine diatom Phaeodactylum tricornutum. Koh HY; Lee JH; Han SJ; Park H; Lee SG Appl Biochem Biotechnol; 2015 Jan; 175(2):677-86. PubMed ID: 25342270 [TBL] [Abstract][Full Text] [Related]
22. Effect of Type I Antifreeze Proteins on the Freezing and Melting Processes of Cryoprotective Solutions Studied by Site-Directed Spin Labeling Technique. Perez AF; Taing KR; Quon JC; Flores A; Ba Y Crystals (Basel); 2019; 9(7):. PubMed ID: 33224522 [TBL] [Abstract][Full Text] [Related]
23. Novel Apoplastic Antifreeze Proteins of Short SE; Zamorano M; Aranzaez-Ríos C; Lee-Estevez M; Díaz R; Quiñones J; Ulloa-Rodríguez P; Villalobos EF; Bravo LA; Graether SP; Farías JG Biomolecules; 2024 Feb; 14(2):. PubMed ID: 38397411 [TBL] [Abstract][Full Text] [Related]
24. Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Park KS; Do H; Lee JH; Park SI; Kim Ej; Kim SJ; Kang SH; Kim HJ Cryobiology; 2012 Jun; 64(3):286-96. PubMed ID: 22426061 [TBL] [Abstract][Full Text] [Related]
25. Ice recrystallization is strongly inhibited when antifreeze proteins bind to multiple ice planes. Rahman AT; Arai T; Yamauchi A; Miura A; Kondo H; Ohyama Y; Tsuda S Sci Rep; 2019 Feb; 9(1):2212. PubMed ID: 30760774 [TBL] [Abstract][Full Text] [Related]
26. Ice recrystallization inhibition activity varies with ice-binding protein type and does not correlate with thermal hysteresis. Gruneberg AK; Graham LA; Eves R; Agrawal P; Oleschuk RD; Davies PL Cryobiology; 2021 Apr; 99():28-39. PubMed ID: 33529683 [TBL] [Abstract][Full Text] [Related]
27. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370 [TBL] [Abstract][Full Text] [Related]
28. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture. Eskandari A; Leow TC; Rahman MBA; Oslan SN Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33317024 [TBL] [Abstract][Full Text] [Related]
30. Structural basis for the binding of a globular antifreeze protein to ice. Jia Z; DeLuca CI; Chao H; Davies PL Nature; 1996 Nov; 384(6606):285-8. PubMed ID: 8918883 [TBL] [Abstract][Full Text] [Related]
31. Peptide backbone circularization enhances antifreeze protein thermostability. Stevens CA; Semrau J; Chiriac D; Litschko M; Campbell RL; Langelaan DN; Smith SP; Davies PL; Allingham JS Protein Sci; 2017 Oct; 26(10):1932-1941. PubMed ID: 28691252 [TBL] [Abstract][Full Text] [Related]
32. Divergent Mechanisms of Ice Growth Inhibition by Antifreeze Proteins. Drori R; Stevens CA Methods Mol Biol; 2024; 2730():169-181. PubMed ID: 37943458 [TBL] [Abstract][Full Text] [Related]
33. Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae). Uhlig C; Kabisch J; Palm GJ; Valentin K; Schweder T; Krell A Cryobiology; 2011 Dec; 63(3):220-8. PubMed ID: 21884691 [TBL] [Abstract][Full Text] [Related]
34. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice. Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594 [TBL] [Abstract][Full Text] [Related]
35. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins. Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359 [TBL] [Abstract][Full Text] [Related]
36. Purification, crystal structure determination and functional characterization of type III antifreeze proteins from the European eelpout Zoarces viviparus. Wilkens C; Poulsen JC; Ramløv H; Lo Leggio L Cryobiology; 2014 Aug; 69(1):163-8. PubMed ID: 25025819 [TBL] [Abstract][Full Text] [Related]
37. Brassica juncea leaf cuticle contains xylose and mannose (xylomannan) which inhibit ice recrystallization on the leaf surface. Yadav K; Arya M; Prakash S; Jha BS; Manchanda P; Kumar A; Deswal R Planta; 2023 Jul; 258(2):44. PubMed ID: 37460860 [TBL] [Abstract][Full Text] [Related]
38. Structural diversity of marine anti-freezing proteins, properties and potential applications: a review. Ghalamara S; Silva S; Brazinha C; Pintado M Bioresour Bioprocess; 2022 Jan; 9(1):5. PubMed ID: 38647561 [TBL] [Abstract][Full Text] [Related]
39. Structure and application of antifreeze proteins from Antarctic bacteria. Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139 [TBL] [Abstract][Full Text] [Related]
40. Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes. Mahatabuddin S; Tsuda S Adv Exp Med Biol; 2018; 1081():321-337. PubMed ID: 30288717 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]