BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33598451)

  • 1. Comparative Transcriptome Analysis of
    Huang K; Zhang B; Chen Y; Liu ZQ; Zheng YG
    Front Bioeng Biotechnol; 2020; 8():621431. PubMed ID: 33598451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced amphotericin B production by genetically engineered Streptomyces nodosus.
    Huang K; Zhang B; Shen ZY; Cai X; Liu ZQ; Zheng YG
    Microbiol Res; 2021 Jan; 242():126623. PubMed ID: 33189073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the production of amphotericin B by
    Huang K; Zhang B; Chen Y; Wu ZM; Liu ZQ; Zheng YG
    3 Biotech; 2021 Jun; 11(6):299. PubMed ID: 34194892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative metabolomics analysis of amphotericin B high-yield mechanism for metabolic engineering.
    Zhang B; Chen Y; Jiang SX; Cai X; Huang K; Liu ZQ; Zheng YG
    Microb Cell Fact; 2021 Mar; 20(1):66. PubMed ID: 33750383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amphotericin B biosynthesis in Streptomyces nodosus: quantitative analysis of metabolism via LC-MS/MS based metabolomics for rational design.
    Zhang B; Zhou YT; Jiang SX; Zhang YH; Huang K; Liu ZQ; Zheng YG
    Microb Cell Fact; 2020 Jan; 19(1):18. PubMed ID: 32005241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the effects of different nitrogen sources and calcium on the production of amphotericin by Streptomyces nodosus based on comparative transcriptome.
    Huang K; Zhang B; Chen Y; Wu ZM; Liu ZQ; Zheng YG
    Biotechnol Appl Biochem; 2022 Aug; 69(4):1489-1501. PubMed ID: 34252982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of glucose limitation and specific mutations in the module 5 enoyl reductase domains in the nystatin and amphotericin polyketide synthases on polyene macrolide biosynthesis.
    Borgos SE; Sletta H; Fjaervik E; Brautaset T; Ellingsen TE; Gulliksen OM; Zotchev SB
    Arch Microbiol; 2006 Apr; 185(3):165-71. PubMed ID: 16416127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ detection of antibiotic amphotericin B produced in Streptomyces nodosus using Raman microspectroscopy.
    Miyaoka R; Hosokawa M; Ando M; Mori T; Hamaguchi HO; Takeyama H
    Mar Drugs; 2014 May; 12(5):2827-39. PubMed ID: 24828290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of amphotericin B production by a newly isolated Streptomyces nodosus mutant.
    Zhang B; Zhang HD; Zhou YT; Huang K; Liu ZQ; Zheng YG
    Biotechnol Appl Biochem; 2018 Mar; 65(2):188-194. PubMed ID: 28762559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes.
    Caffrey P; Lynch S; Flood E; Finnan S; Oliynyk M
    Chem Biol; 2001 Jul; 8(7):713-23. PubMed ID: 11451671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced AmB Production in
    Zhang B; Zhang YH; Chen Y; Chen K; Jiang SX; Huang K; Liu ZQ; Zheng YG
    Front Bioeng Biotechnol; 2020; 8():597. PubMed ID: 32760700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting the genome sequence of Streptomyces nodosus for enhanced antibiotic production.
    Sweeney P; Murphy CD; Caffrey P
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1285-1295. PubMed ID: 26497174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Streptomyces nodosus sp. n., the amphotericin-producing organism.
    TREJO WH; BENNETT RE
    J Bacteriol; 1963 Feb; 85(2):436-9. PubMed ID: 13994057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques.
    Carmody M; Byrne B; Murphy B; Breen C; Lynch S; Flood E; Finnan S; Caffrey P
    Gene; 2004 Dec; 343(1):107-15. PubMed ID: 15563836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphotericin B-copper(II) complex as a potential agent with higher antifungal activity against Candida albicans.
    Chudzik B; Tracz IB; Czernel G; Fiołka MJ; Borsuk G; Gagoś M
    Eur J Pharm Sci; 2013 Aug; 49(5):850-7. PubMed ID: 23791641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the biosynthetic gene cluster of the polyene macrolide antibiotic reedsmycins from a marine-derived Streptomyces strain.
    Yao T; Liu Z; Li T; Zhang H; Liu J; Li H; Che Q; Zhu T; Li D; Li W
    Microb Cell Fact; 2018 Jun; 17(1):98. PubMed ID: 29914489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streptomyces nodosus host strains optimized for polyene glycosylation engineering.
    Stephens N; Rawlings B; Caffrey P
    Biosci Biotechnol Biochem; 2012; 76(2):384-7. PubMed ID: 22313766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulation and increased production of asukamycin in engineered Streptomyces nodosus subsp. asukaensis strains.
    Xie P; Sheng Y; Ito T; Mahmud T
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):451-60. PubMed ID: 22555913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characteristics of the electrophysical parameters of the growing mycelium of Act. nodosus, a producer of amphotericin B].
    Sargaev PM; Vekshin GA; Sedykh NV
    Antibiotiki; 1981 May; 26(5):349-52. PubMed ID: 7259139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterisation of amphotericin B analogues and truncated polyketide intermediates produced by genetic engineering of Streptomyces nodosus.
    Murphy B; Anderson K; Borissow C; Caffrey P; Griffith G; Hearn J; Ibrahim O; Khan N; Lamburn N; Lee M; Pugh K; Rawlings B
    Org Biomol Chem; 2010 Aug; 8(16):3758-70. PubMed ID: 20571619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.