These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 33598456)
1. BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR-Drug Interaction Based on Wordbook Learning From Sequences. Qiu W; Lv Z; Hong Y; Jia J; Xiao X Front Cell Dev Biol; 2020; 8():623858. PubMed ID: 33598456 [No Abstract] [Full Text] [Related]
2. Identifying GPCR-drug interaction based on wordbook learning from sequences. Wang P; Huang X; Qiu W; Xiao X BMC Bioinformatics; 2020 Apr; 21(1):150. PubMed ID: 32312232 [TBL] [Abstract][Full Text] [Related]
3. EMCBOW-GPCR: A method for identifying G-protein coupled receptors based on word embedding and wordbooks. Qiu W; Lv Z; Xiao X; Shao S; Lin H Comput Struct Biotechnol J; 2021; 19():4961-4969. PubMed ID: 34527200 [TBL] [Abstract][Full Text] [Related]
4. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. Xiao X; Min JL; Lin WZ; Liu Z; Cheng X; Chou KC J Biomol Struct Dyn; 2015; 33(10):2221-33. PubMed ID: 25513722 [TBL] [Abstract][Full Text] [Related]
5. ACP-GBDT: An improved anticancer peptide identification method with gradient boosting decision tree. Li Y; Ma D; Chen D; Chen Y Front Genet; 2023; 14():1165765. PubMed ID: 37065496 [TBL] [Abstract][Full Text] [Related]
6. i6mA-VC: A Multi-Classifier Voting Method for the Computational Identification of DNA N6-methyladenine Sites. Xue T; Zhang S; Qiao H Interdiscip Sci; 2021 Sep; 13(3):413-425. PubMed ID: 33834381 [TBL] [Abstract][Full Text] [Related]
7. Predicting potential miRNA-disease associations by combining gradient boosting decision tree with logistic regression. Zhou S; Wang S; Wu Q; Azim R; Li W Comput Biol Chem; 2020 Apr; 85():107200. PubMed ID: 32058946 [TBL] [Abstract][Full Text] [Related]
8. Recognition of bovine milk somatic cells based on multi-feature extraction and a GBDT-AdaBoost fusion model. Bai J; Xue H; Jiang X; Zhou Y Math Biosci Eng; 2022 Apr; 19(6):5850-5866. PubMed ID: 35603382 [TBL] [Abstract][Full Text] [Related]
9. GPCR-drug interactions prediction using random forest with drug-association-matrix-based post-processing procedure. Hu J; Li Y; Yang JY; Shen HB; Yu DJ Comput Biol Chem; 2016 Feb; 60():59-71. PubMed ID: 26674225 [TBL] [Abstract][Full Text] [Related]
10. An Ameliorated Prediction of Drug-Target Interactions Based on Multi-Scale Discrete Wavelet Transform and Network Features. Shen C; Ding Y; Tang J; Xu X; Guo F Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28813000 [TBL] [Abstract][Full Text] [Related]
11. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines. Nie G; Li Y; Wang F; Wang S; Hu X Biomed Mater Eng; 2015; 26 Suppl 1():S1829-36. PubMed ID: 26405954 [TBL] [Abstract][Full Text] [Related]
12. DTI-BERT: Identifying Drug-Target Interactions in Cellular Networking Based on BERT and Deep Learning Method. Zheng J; Xiao X; Qiu WR Front Genet; 2022; 13():859188. PubMed ID: 35754843 [TBL] [Abstract][Full Text] [Related]
13. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing. Redkar S; Mondal S; Joseph A; Hareesha KS Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548 [TBL] [Abstract][Full Text] [Related]
14. GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier. Liu X; Zhu B; Dai XW; Xu ZA; Li R; Qian Y; Lu YP; Zhang W; Liu Y; Zheng J BMC Genomics; 2023 Dec; 24(1):765. PubMed ID: 38082413 [TBL] [Abstract][Full Text] [Related]
15. GPCR-MPredictor: multi-level prediction of G protein-coupled receptors using genetic ensemble. Naveed M; Khan A Amino Acids; 2012 May; 42(5):1809-23. PubMed ID: 21505826 [TBL] [Abstract][Full Text] [Related]
16. Prediction of aptamer-protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier. Yang Q; Jia C; Li T Math Biosci; 2019 May; 311():103-108. PubMed ID: 30880100 [TBL] [Abstract][Full Text] [Related]
17. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking. Xiao X; Min JL; Wang P; Chou KC PLoS One; 2013; 8(8):e72234. PubMed ID: 24015221 [TBL] [Abstract][Full Text] [Related]
18. An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features. An JY; Meng FR; Yan ZJ BioData Min; 2021 Jan; 14(1):3. PubMed ID: 33472664 [TBL] [Abstract][Full Text] [Related]
19. GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions. Xiao X; Wang P; Chou KC Mol Biosyst; 2011 Mar; 7(3):911-9. PubMed ID: 21180772 [TBL] [Abstract][Full Text] [Related]
20. Prediction of Drug-Target Interactions by Combining Dual-Tree Complex Wavelet Transform with Ensemble Learning Method. Pan J; Li LP; You ZH; Yu CQ; Ren ZH; Chen Y Molecules; 2021 Sep; 26(17):. PubMed ID: 34500792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]