These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33598870)

  • 1. Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2021 Mar; 35(3):285-295. PubMed ID: 33598870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Compound Profiling Matrices, Part II: Relative Performance of Multitask Deep Learning and Random Forest Classification on the Basis of Varying Amounts of Training Data.
    Rodríguez-Pérez R; Bajorath J
    ACS Omega; 2018 Sep; 3(9):12033-12040. PubMed ID: 30320286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2020 Oct; 34(10):1013-1026. PubMed ID: 32361862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Alternative Strategies for the Identification of Potent Compounds Using Support Vector Machine and Regression Modeling.
    Miyao T; Funatsu K; Bajorath J
    J Chem Inf Model; 2019 Mar; 59(3):983-992. PubMed ID: 30547580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting Machine-Learning Prediction of Molecular Activity: Is an Applicability Domain Needed for Quantitative Structure-Activity Relationship Models Based on Deep Neural Networks?
    Liu R; Wang H; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2019 Jan; 59(1):117-126. PubMed ID: 30412667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of QSAR Equations for Virtual Screening.
    Spiegel J; Senderowitz H
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33105703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set.
    Lenselink EB; Ten Dijke N; Bongers B; Papadatos G; van Vlijmen HWT; Kowalczyk W; IJzerman AP; van Westen GJP
    J Cheminform; 2017 Aug; 9(1):45. PubMed ID: 29086168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships.
    Xu Y; Ma J; Liaw A; Sheridan RP; Svetnik V
    J Chem Inf Model; 2017 Oct; 57(10):2490-2504. PubMed ID: 28872869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation Study of QSAR/DNN Models Using the Competition Datasets.
    Kato Y; Hamada S; Goto H
    Mol Inform; 2020 Jan; 39(1-2):e1900154. PubMed ID: 31802634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Potent Compounds Using a Conditional Variational Autoencoder Based upon a New Structure-Potency Fingerprint.
    Janela T; Takeuchi K; Bajorath J
    Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profile-QSAR 2.0: Kinase Virtual Screening Accuracy Comparable to Four-Concentration IC
    Martin EJ; Polyakov VR; Tian L; Perez RC
    J Chem Inf Model; 2017 Aug; 57(8):2077-2088. PubMed ID: 28651433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets.
    Wenzel J; Matter H; Schmidt F
    J Chem Inf Model; 2019 Mar; 59(3):1253-1268. PubMed ID: 30615828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks.
    Prado-Prado FJ; Martinez de la Vega O; Uriarte E; Ubeira FM; Chou KC; González-Díaz H
    Bioorg Med Chem; 2009 Jan; 17(2):569-75. PubMed ID: 19112024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.
    Winkler DA; Le TC
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27783464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep neural nets as a method for quantitative structure-activity relationships.
    Ma J; Sheridan RP; Liaw A; Dahl GE; Svetnik V
    J Chem Inf Model; 2015 Feb; 55(2):263-74. PubMed ID: 25635324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing Deep and Shallow Learning Methods for Quantitative Prediction of Acute Chemical Toxicity.
    Liu R; Madore M; Glover KP; Feasel MG; Wallqvist A
    Toxicol Sci; 2018 Aug; 164(2):512-526. PubMed ID: 29722883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic artifacts in support vector regression-based compound potency prediction revealed by statistical and activity landscape analysis.
    Balfer J; Bajorath J
    PLoS One; 2015; 10(3):e0119301. PubMed ID: 25742011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds.
    Prado-Prado FJ; González-Díaz H; de la Vega OM; Ubeira FM; Chou KC
    Bioorg Med Chem; 2008 Jun; 16(11):5871-80. PubMed ID: 18485714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep neural network-based approach for prediction of mutagenicity of compounds.
    Kumar R; Khan FU; Sharma A; Siddiqui MH; Aziz IB; Kamal MA; Ashraf GM; Alghamdi BS; Uddin MS
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):47641-47650. PubMed ID: 33895950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.