BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 33599106)

  • 1. Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning.
    Pagani S; Manzoni A
    Int J Numer Method Biomed Eng; 2021 Jun; 37(6):e3450. PubMed ID: 33599106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient approximation of cardiac mechanics through reduced-order modeling with deep learning-based operator approximation.
    Cicci L; Fresca S; Manzoni A; Quarteroni A
    Int J Numer Method Biomed Eng; 2024 Jan; 40(1):e3783. PubMed ID: 37921217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning modeling of lung mechanics: Assessing the variability and propagation of uncertainty in respiratory-system compliance and airway resistance.
    Barahona J; Sahli Costabal F; Hurtado DE
    Comput Methods Programs Biomed; 2024 Jan; 243():107888. PubMed ID: 37948910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of Parametric Uncertainty in Aliev-Panfilov Model of Cardiac Excitation.
    Son J; Du Y; Du D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5450-5453. PubMed ID: 30441570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of POD-Galerkin-DEIM reduced order modeling of cardiac monodomain formulation.
    Khan R; Ng KT
    Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34808611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized polynomial chaos-based uncertainty quantification and propagation in multi-scale modeling of cardiac electrophysiology.
    Hu Z; Du D; Du Y
    Comput Biol Med; 2018 Nov; 102():57-74. PubMed ID: 30248513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.
    Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L
    Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Uncertainty Quantification and Sensitivity Analysis for Cardiac Action Potential Models.
    Pathmanathan P; Cordeiro JM; Gray RA
    Front Physiol; 2019; 10():721. PubMed ID: 31297060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical study on the effects of spatial and temporal discretization in cardiac electrophysiology.
    Woodworth LA; Cansız B; Kaliske M
    Int J Numer Method Biomed Eng; 2021 May; 37(5):e3443. PubMed ID: 33522111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. POD-Enhanced Deep Learning-Based Reduced Order Models for the Real-Time Simulation of Cardiac Electrophysiology in the Left Atrium.
    Fresca S; Manzoni A; Dedè L; Quarteroni A
    Front Physiol; 2021; 12():679076. PubMed ID: 34630131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based reduced order models in cardiac electrophysiology.
    Fresca S; Manzoni A; Dedè L; Quarteroni A
    PLoS One; 2020; 15(10):e0239416. PubMed ID: 33002014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology.
    Pathmanathan P; Shotwell MS; Gavaghan DJ; Cordeiro JM; Gray RA
    Prog Biophys Mol Biol; 2015 Jan; 117(1):4-18. PubMed ID: 25661325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity analysis and inverse uncertainty quantification for the left ventricular passive mechanics.
    Lazarus A; Dalton D; Husmeier D; Gao H
    Biomech Model Mechanobiol; 2022 Jun; 21(3):953-982. PubMed ID: 35377030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-Driven Uncertainty Quantification for Cardiac Electrophysiological Models: Impact of Physiological Variability on Action Potential and Spiral Wave Dynamics.
    Pathmanathan P; Galappaththige SK; Cordeiro JM; Kaboudian A; Fenton FH; Gray RA
    Front Physiol; 2020; 11():585400. PubMed ID: 33329034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models.
    Pineda-Antunez C; Seguin C; van Duuren LA; Knudsen AB; Davidi B; Nascimento de Lima P; Rutter C; Kuntz KM; Lansdorp-Vogelaar I; Collier N; Ozik J; Alarid-Escudero F
    Med Decis Making; 2024 Jun; ():272989X241255618. PubMed ID: 38858832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven Uncertainty Quantification in Computational Human Head Models.
    Upadhyay K; Giovanis DG; Alshareef A; Knutsen AK; Johnson CL; Carass A; Bayly PV; Shields MD; Ramesh KT
    Comput Methods Appl Mech Eng; 2022 Aug; 398():. PubMed ID: 37994358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity analysis of an electrophysiology model for the left ventricle.
    Del Corso G; Verzicco R; Viola F
    J R Soc Interface; 2020 Oct; 17(171):20200532. PubMed ID: 33109017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choosing a Metamodel of a Simulation Model for Uncertainty Quantification.
    de Carvalho TM; van Rosmalen J; Wolff HB; Koffijberg H; Coupé VMH
    Med Decis Making; 2022 Jan; 42(1):28-42. PubMed ID: 34098793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast uncertainty quantification of activation sequences in patient-specific cardiac electrophysiology meeting clinical time constraints.
    Quaglino A; Pezzuto S; Koutsourelakis PS; Auricchio A; Krause R
    Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2985. PubMed ID: 29577657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physics-constrained deep active learning for spatiotemporal modeling of cardiac electrodynamics.
    Xie J; Yao B
    Comput Biol Med; 2022 Jul; 146():105586. PubMed ID: 35751197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.