These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 33599106)

  • 1. Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning.
    Pagani S; Manzoni A
    Int J Numer Method Biomed Eng; 2021 Jun; 37(6):e3450. PubMed ID: 33599106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised stochastic learning and reduced order modeling for global sensitivity analysis in cardiac electrophysiology models.
    El Moçayd N; Belhamadia Y; Seaid M
    Comput Methods Programs Biomed; 2024 Oct; 255():108311. PubMed ID: 39032242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient approximation of cardiac mechanics through reduced-order modeling with deep learning-based operator approximation.
    Cicci L; Fresca S; Manzoni A; Quarteroni A
    Int J Numer Method Biomed Eng; 2024 Jan; 40(1):e3783. PubMed ID: 37921217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning modeling of lung mechanics: Assessing the variability and propagation of uncertainty in respiratory-system compliance and airway resistance.
    Barahona J; Sahli Costabal F; Hurtado DE
    Comput Methods Programs Biomed; 2024 Jan; 243():107888. PubMed ID: 37948910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation of Parametric Uncertainty in Aliev-Panfilov Model of Cardiac Excitation.
    Son J; Du Y; Du D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5450-5453. PubMed ID: 30441570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study of POD-Galerkin-DEIM reduced order modeling of cardiac monodomain formulation.
    Khan R; Ng KT
    Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34808611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized polynomial chaos-based uncertainty quantification and propagation in multi-scale modeling of cardiac electrophysiology.
    Hu Z; Du D; Du Y
    Comput Biol Med; 2018 Nov; 102():57-74. PubMed ID: 30248513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models.
    Pineda-Antunez C; Seguin C; van Duuren LA; Knudsen AB; Davidi B; Nascimento de Lima P; Rutter C; Kuntz KM; Lansdorp-Vogelaar I; Collier N; Ozik J; Alarid-Escudero F
    Med Decis Making; 2024 Jul; 44(5):543-553. PubMed ID: 38858832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.
    Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L
    Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Uncertainty Quantification and Sensitivity Analysis for Cardiac Action Potential Models.
    Pathmanathan P; Cordeiro JM; Gray RA
    Front Physiol; 2019; 10():721. PubMed ID: 31297060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical study on the effects of spatial and temporal discretization in cardiac electrophysiology.
    Woodworth LA; Cansız B; Kaliske M
    Int J Numer Method Biomed Eng; 2021 May; 37(5):e3443. PubMed ID: 33522111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. POD-Enhanced Deep Learning-Based Reduced Order Models for the Real-Time Simulation of Cardiac Electrophysiology in the Left Atrium.
    Fresca S; Manzoni A; Dedè L; Quarteroni A
    Front Physiol; 2021; 12():679076. PubMed ID: 34630131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-based reduced order models in cardiac electrophysiology.
    Fresca S; Manzoni A; Dedè L; Quarteroni A
    PLoS One; 2020; 15(10):e0239416. PubMed ID: 33002014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology.
    Pathmanathan P; Shotwell MS; Gavaghan DJ; Cordeiro JM; Gray RA
    Prog Biophys Mol Biol; 2015 Jan; 117(1):4-18. PubMed ID: 25661325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity analysis and inverse uncertainty quantification for the left ventricular passive mechanics.
    Lazarus A; Dalton D; Husmeier D; Gao H
    Biomech Model Mechanobiol; 2022 Jun; 21(3):953-982. PubMed ID: 35377030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven Uncertainty Quantification in Computational Human Head Models.
    Upadhyay K; Giovanis DG; Alshareef A; Knutsen AK; Johnson CL; Carass A; Bayly PV; Shields MD; Ramesh KT
    Comput Methods Appl Mech Eng; 2022 Aug; 398():. PubMed ID: 37994358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity analysis of an electrophysiology model for the left ventricle.
    Del Corso G; Verzicco R; Viola F
    J R Soc Interface; 2020 Oct; 17(171):20200532. PubMed ID: 33109017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-Driven Uncertainty Quantification for Cardiac Electrophysiological Models: Impact of Physiological Variability on Action Potential and Spiral Wave Dynamics.
    Pathmanathan P; Galappaththige SK; Cordeiro JM; Kaboudian A; Fenton FH; Gray RA
    Front Physiol; 2020; 11():585400. PubMed ID: 33329034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choosing a Metamodel of a Simulation Model for Uncertainty Quantification.
    de Carvalho TM; van Rosmalen J; Wolff HB; Koffijberg H; Coupé VMH
    Med Decis Making; 2022 Jan; 42(1):28-42. PubMed ID: 34098793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast uncertainty quantification of activation sequences in patient-specific cardiac electrophysiology meeting clinical time constraints.
    Quaglino A; Pezzuto S; Koutsourelakis PS; Auricchio A; Krause R
    Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2985. PubMed ID: 29577657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.