These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 33599315)
1. Discovery of wing imaginal discs in the penultimate instar of the lacewing Mallada desjardinsi (Insecta: Neuroptera: Chrysopidae) with histological notes on postembryonic imaginal disc development. Niitsu S; Hayashi M; Nemoto T; Nomura M; Kamito T J Morphol; 2021 May; 282(5):679-684. PubMed ID: 33599315 [TBL] [Abstract][Full Text] [Related]
2. Histological analysis of the dynamics of growth of imaginal discs and histoblast nests during the larval development ofDrosophila melanogaster. Mandaravally Madhavan M; Schneiderman HA Wilehm Roux Arch Dev Biol; 1977 Dec; 183(4):269-305. PubMed ID: 28304865 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome dynamics during metamorphosis of imaginal discs into wings and thoracic dorsum in Apis mellifera castes. Soares MPM; Pinheiro DG; de Paula Freitas FC; Simões ZLP; Bitondi MMG BMC Genomics; 2021 Oct; 22(1):756. PubMed ID: 34674639 [TBL] [Abstract][Full Text] [Related]
4. An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). Vasilikopoulos A; Misof B; Meusemann K; Lieberz D; Flouri T; Beutel RG; Niehuis O; Wappler T; Rust J; Peters RS; Donath A; Podsiadlowski L; Mayer C; Bartel D; Böhm A; Liu S; Kapli P; Greve C; Jepson JE; Liu X; Zhou X; Aspöck H; Aspöck U BMC Evol Biol; 2020 Jun; 20(1):64. PubMed ID: 32493355 [TBL] [Abstract][Full Text] [Related]
5. What are and what are not imaginal discs: reevaluation of some basic concepts (Insecta, Holometabola). Svácha P Dev Biol; 1992 Nov; 154(1):101-17. PubMed ID: 1426619 [TBL] [Abstract][Full Text] [Related]
6. Postembryonic development of the wing imaginal discs in the female wingless bagworm moth Eumeta variegata (Lepidoptera, Psychidae). Niitsu S J Morphol; 2003 Aug; 257(2):164-70. PubMed ID: 12833377 [TBL] [Abstract][Full Text] [Related]
7. Evolution of holometaboly revealed by developmental transformation of internal thoracic structures in a green lacewing Chrysopa pallens (Neuroptera: Chrysopidae). Zhao C; Wang M; Gao C; Li M; Zhang K; Yang D; Liu X Insect Sci; 2022 Jun; 29(3):767-782. PubMed ID: 34905287 [TBL] [Abstract][Full Text] [Related]
8. In-vivo imaging of the Drosophila wing imaginal disc over time: novel insights on growth and boundary formation. Nienhaus U; Aegerter-Wilmsen T; Aegerter CM PLoS One; 2012; 7(10):e47594. PubMed ID: 23091633 [TBL] [Abstract][Full Text] [Related]
9. Towards long term cultivation of Drosophila wing imaginal discs in vitro. Handke B; Szabad J; Lidsky PV; Hafen E; Lehner CF PLoS One; 2014; 9(9):e107333. PubMed ID: 25203426 [TBL] [Abstract][Full Text] [Related]
10. Nano-CT imaging of larvae in the ant Pheidole hyatti reveals coordinated growth of a rudimentary organ necessary for soldier development. Koch S; Tahara R; Vasquez-Correa A; Abouheif E J Exp Zool B Mol Dev Evol; 2021 Nov; 336(7):540-553. PubMed ID: 34549874 [TBL] [Abstract][Full Text] [Related]
11. Mass Purification Protocol for Hoareau M; de Noiron J; Colin J; Guénal I Biology (Basel); 2022 Sep; 11(10):. PubMed ID: 36290290 [No Abstract] [Full Text] [Related]
13. Defective gap-junctional communication associated with imaginal disc overgrowth and degeneration caused by mutations of the dco gene in Drosophila. Jursnich VA; Fraser SE; Held LI; Ryerse J; Bryant PJ Dev Biol; 1990 Aug; 140(2):413-29. PubMed ID: 2373260 [TBL] [Abstract][Full Text] [Related]
14. Contribution to understanding the evolution of holometaboly: transformation of internal head structures during the metamorphosis in the green lacewing Chrysopa pallens (Neuroptera: Chrysopidae). Zhao C; Ang Y; Wang M; Gao C; Zhang K; Tang C; Liu X; Li M; Yang D; Meier R BMC Evol Biol; 2020 Jun; 20(1):79. PubMed ID: 32600301 [TBL] [Abstract][Full Text] [Related]
15. The role of nutrition in creation of the eye imaginal disc and initiation of metamorphosis in Manduca sexta. MacWhinnie SG; Allee JP; Nelson CA; Riddiford LM; Truman JW; Champlin DT Dev Biol; 2005 Sep; 285(2):285-97. PubMed ID: 16099447 [TBL] [Abstract][Full Text] [Related]
16. The first green lacewing (Insecta: Neuroptera: Chrysopidae) from the mid-Cretaceous amber of Myanmar. Lu X; Wang B; Ohl M; Liu X Zootaxa; 2018 Mar; 4399(4):563-570. PubMed ID: 29690295 [TBL] [Abstract][Full Text] [Related]
17. Insulin/IGF signaling regulates the change in commitment in imaginal discs and primordia by overriding the effect of juvenile hormone. Koyama T; Syropyatova MO; Riddiford LM Dev Biol; 2008 Dec; 324(2):258-65. PubMed ID: 18845136 [TBL] [Abstract][Full Text] [Related]
18. The ecdysone receptor controls the post-critical weight switch to nutrition-independent differentiation in Drosophila wing imaginal discs. Mirth CK; Truman JW; Riddiford LM Development; 2009 Jul; 136(14):2345-53. PubMed ID: 19515698 [TBL] [Abstract][Full Text] [Related]
19. Imaginal discs regulate developmental timing in Drosophila melanogaster. Stieper BC; Kupershtok M; Driscoll MV; Shingleton AW Dev Biol; 2008 Sep; 321(1):18-26. PubMed ID: 18632097 [TBL] [Abstract][Full Text] [Related]
20. Commencement of pupal commitment in late penultimate instar and its hormonal control in wing imaginal discs of the silkworm, Bombyx mori. Koyama T; Obara Y; Iwami M; Sakurai S J Insect Physiol; 2004; 50(2-3):123-33. PubMed ID: 15019513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]