BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33599480)

  • 1. Independent Pattern Formation of Nanorod and Nanoparticle Swarms under an Oscillating Field.
    Du X; Yu J; Jin D; Chiu PWY; Zhang L
    ACS Nano; 2021 Mar; 15(3):4429-4439. PubMed ID: 33599480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable Collective Behavior in Dynamically Self-Assembled Mobile Microrobotic Swarms.
    Yigit B; Alapan Y; Sitti M
    Adv Sci (Weinh); 2019 Mar; 6(6):1801837. PubMed ID: 30937264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microrobotic swarms for selective embolization.
    Law J; Wang X; Luo M; Xin L; Du X; Dou W; Wang T; Shan G; Wang Y; Song P; Huang X; Yu J; Sun Y
    Sci Adv; 2022 Jul; 8(29):eabm5752. PubMed ID: 35857830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vector-Controlled Wheel-Like Magnetic Swarms With Multimodal Locomotion and Reconfigurable Capabilities.
    Li M; Zhang T; Zhang X; Mu J; Zhang W
    Front Bioeng Biotechnol; 2022; 10():877964. PubMed ID: 35547169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active generation and magnetic actuation of microrobotic swarms in bio-fluids.
    Yu J; Jin D; Chan KF; Wang Q; Yuan K; Zhang L
    Nat Commun; 2019 Dec; 10(1):5631. PubMed ID: 31822669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swarm Autonomy: From Agent Functionalization to Machine Intelligence.
    Wang Y; Chen H; Xie L; Liu J; Zhang L; Yu J
    Adv Mater; 2024 Apr; ():e2312956. PubMed ID: 38653192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective Behaviors of Magnetic Microparticle Swarms: From Dexterous Tentacles to Reconfigurable Carpets.
    Xu Z; Xu Q
    ACS Nano; 2022 Sep; 16(9):13728-13739. PubMed ID: 35925818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation.
    Xie H; Sun M; Fan X; Lin Z; Chen W; Wang L; Dong L; He Q
    Sci Robot; 2019 Mar; 4(28):. PubMed ID: 33137748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery.
    Wang Q; Zhang L
    ACS Nano; 2021 Jan; 15(1):149-174. PubMed ID: 33417764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do small swarms have an advantage when house hunting? The effect of swarm size on nest-site selection by Apis mellifera.
    Schaerf TM; Makinson JC; Myerscough MR; Beekman M
    J R Soc Interface; 2013 Oct; 10(87):20130533. PubMed ID: 23904590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cohesive self-organization of mobile microrobotic swarms.
    Yigit B; Alapan Y; Sitti M
    Soft Matter; 2020 Feb; 16(8):1996-2004. PubMed ID: 32003392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation Techniques Used in Shape-Forming Microrobotic Systems with Multiple Microrobots: A Review.
    Konara M; Mudugamuwa A; Dodampegama S; Roshan U; Amarasinghe R; Dao DV
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Control of Nanomotor Swarms for Magnetic-Field-Programmed Cancer Cell Destruction.
    Shen Y; Zhang W; Li G; Ning P; Li Z; Chen H; Wei X; Pan X; Qin Y; He B; Yu Z; Cheng Y
    ACS Nano; 2021 Dec; 15(12):20020-20031. PubMed ID: 34807565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Graph-Transformational Approach to Swarm Computation.
    Abdenebaoui L; Kreowski HJ; Kuske S
    Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33921251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A game-based approach for designing a collaborative evolution mechanism for unmanned swarms on community networks.
    Wu Z; Pan L; Yu M; Liu J; Mei D
    Sci Rep; 2022 Nov; 12(1):18892. PubMed ID: 36344605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery.
    Wang Q; Chan KF; Schweizer K; Du X; Jin D; Yu SCH; Nelson BJ; Zhang L
    Sci Adv; 2021 Feb; 7(9):. PubMed ID: 33637532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microrobotic Swarms for Intracellular Measurement with Enhanced Signal-to-Noise Ratio.
    Wang X; Wang T; Chen X; Law J; Shan G; Tang W; Gong Z; Pan P; Liu X; Yu J; Ru C; Huang X; Sun Y
    ACS Nano; 2022 Jul; 16(7):10824-10839. PubMed ID: 35786860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical transition for colliding swarms.
    Hindes J; Edwards V; Hsieh MA; Schwartz IB
    Phys Rev E; 2021 Jun; 103(6-1):062602. PubMed ID: 34271651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic Swarms: From Active Matter Physics to Biomedical and Environmental Applications.
    Fu Y; Yu H; Zhang X; Malgaretti P; Kishore V; Wang W
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-distance Transport in Bacterial Swarms Revealed by Single Nanoparticle Tracking.
    Feng J; He Y
    Bio Protoc; 2020 Nov; 10(21):e3812. PubMed ID: 33659465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.