BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 33599710)

  • 1. Exposure to Spoken Communication in Children With Cochlear Implants During the COVID-19 Lockdown.
    Gordon KA; Daien MF; Negandhi J; Blakeman A; Ganek H; Papsin B; Cushing SL
    JAMA Otolaryngol Head Neck Surg; 2021 Apr; 147(4):368-376. PubMed ID: 33599710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to Spoken Communication During the COVID-19 Pandemic Among Children With Cochlear Implants.
    Wener E; Booth L; Bensky H; Desai V; Negandhi J; Cushing SL; Papsin BC; Gordon KA
    JAMA Netw Open; 2023 Oct; 6(10):e2339042. PubMed ID: 37889489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear Implant Use Remains Consistent Over Time in Children With Single-Sided Deafness.
    Ganek HV; Cushing SL; Papsin BC; Gordon KA
    Ear Hear; 2020; 41(3):678-685. PubMed ID: 31567563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speech, vocabulary, and the education of children using cochlear implants: oral or total communication?
    Connor CM; Hieber S; Arts HA; Zwolan TA
    J Speech Lang Hear Res; 2000 Oct; 43(5):1185-204. PubMed ID: 11063240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors Affecting Daily Cochlear Implant Use in Children: Datalogging Evidence.
    Easwar V; Sanfilippo J; Papsin B; Gordon K
    J Am Acad Audiol; 2016; 27(10):824-838. PubMed ID: 27885978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cochlear Implant Outcomes in Elderly Recipients During the COVID-19 Pandemic.
    Knickerbocker A; Bourn S; Goldstein MR; Jacob A
    Otol Neurotol; 2021 Oct; 42(9):e1256-e1262. PubMed ID: 34267095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear implant datalogging accurately characterizes children's 'auditory scenes'.
    Ganek H; Forde-Dixon D; Cushing SL; Papsin BC; Gordon KA
    Cochlear Implants Int; 2021 Mar; 22(2):85-95. PubMed ID: 33008284
    [No Abstract]   [Full Text] [Related]  

  • 8. Optimization of programming parameters in children with the advanced bionics cochlear implant.
    Baudhuin J; Cadieux J; Firszt JB; Reeder RM; Maxson JL
    J Am Acad Audiol; 2012 May; 23(5):302-12. PubMed ID: 22533974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships Between Daily Device Use and Early Communication Outcomes in Young Children With Cochlear Implants.
    Wiseman KB; Warner-Czyz AD; Kwon S; Fiorentino K; Sweeney M
    Ear Hear; 2021; 42(4):1042-1053. PubMed ID: 33974791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Children With Single-Sided Deafness Use Their Cochlear Implant.
    Polonenko MJ; Papsin BC; Gordon KA
    Ear Hear; 2017; 38(6):681-689. PubMed ID: 28542017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Consistency in Daily Device Use on Speech Perception Abilities in Children with Cochlear Implants: Datalogging Evidence.
    Easwar V; Sanfilippo J; Papsin B; Gordon K
    J Am Acad Audiol; 2018 Oct; 29(9):835-846. PubMed ID: 30278868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of age and postimplantation experience on speech perception measures in children with sequential bilateral cochlear implants.
    Peters BR; Litovsky R; Parkinson A; Lake J
    Otol Neurotol; 2007 Aug; 28(5):649-57. PubMed ID: 17712290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of bilateral cochlear implants in children: Timing of second surgery and the significance of wearing bilateral cochlear implants in Japan.
    Mori N; Yamaguchi S; Ishida A; Kondo K; Okano T; Ito J; Omori K; Yamamoto N
    Auris Nasus Larynx; 2020 Jun; 47(3):359-366. PubMed ID: 31767153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Influence of Forced Social Isolation on the Auditory Ecology and Psychosocial Functions of Listeners With Cochlear Implants During COVID-19 Mitigation Efforts.
    Dunn CC; Stangl E; Oleson J; Smith M; Chipara O; Wu YH
    Ear Hear; 2021; 42(1):20-28. PubMed ID: 33369590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of auditory environments on language outcomes in children with a cochlear implant.
    Poupore NS; Chidarala S; Morris NS; McRackan TR; Schvartz-Leyzac KC
    Int J Audiol; 2024 Jul; 63(7):510-518. PubMed ID: 37293929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Adjustment of Upper Electrical Stimulation Levels in CI Programming and the Effect on Auditory Functioning.
    Vroegop JL; Dingemanse JG; van der Schroeff MP; Metselaar RM; Goedegebure A
    Ear Hear; 2017; 38(4):e232-e240. PubMed ID: 28125445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving speech perception in noise for children with cochlear implants.
    Gifford RH; Olund AP; DeJong M
    J Am Acad Audiol; 2011 Oct; 22(9):623-632. PubMed ID: 22192607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subjective and objective results after bilateral cochlear implantation in adults.
    Laske RD; Veraguth D; Dillier N; Binkert A; Holzmann D; Huber AM
    Otol Neurotol; 2009 Apr; 30(3):313-8. PubMed ID: 19318885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Communication Mode and Speech and Language Outcomes of Young Cochlear Implant Recipients: A Comparison of Auditory-Verbal, Oral Communication, and Total Communication.
    Thomas ES; Zwolan TA
    Otol Neurotol; 2019 Dec; 40(10):e975-e983. PubMed ID: 31663992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benefits of bilateral electrical stimulation with the nucleus cochlear implant in adults: 6-month postoperative results.
    Laszig R; Aschendorff A; Stecker M; Müller-Deile J; Maune S; Dillier N; Weber B; Hey M; Begall K; Lenarz T; Battmer RD; Böhm M; Steffens T; Strutz J; Linder T; Probst R; Allum J; Westhofen M; Doering W
    Otol Neurotol; 2004 Nov; 25(6):958-68. PubMed ID: 15547426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.