BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33599931)

  • 1. Methylparaben chlorination in the presence of bromide ions and ammonia: kinetic study and modeling.
    Abdallah P; Dossier-Berne F; Karpel Vel Leitner N; Deborde M
    Environ Sci Pollut Res Int; 2021 Jun; 28(24):31256-31267. PubMed ID: 33599931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of Chlorination of Benzophenone-3 in the Presence of Bromide and Ammonia.
    Abdallah P; Deborde M; Dossier Berne F; Karpel Vel Leitner N
    Environ Sci Technol; 2015 Dec; 49(24):14359-67. PubMed ID: 26587868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and mechanistic aspects of selenite oxidation by chlorine, bromine, monochloramine, ozone, permanganate, and hydrogen peroxide.
    Liu S; Salhi E; Huang W; Diao K; von Gunten U
    Water Res; 2019 Nov; 164():114876. PubMed ID: 31400591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment.
    Heeb MB; Kristiana I; Trogolo D; Arey JS; von Gunten U
    Water Res; 2017 Mar; 110():91-101. PubMed ID: 27998787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development.
    Acero JL; Piriou P; von Gunten U
    Water Res; 2005 Aug; 39(13):2979-93. PubMed ID: 15985278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds--a critical review.
    Heeb MB; Criquet J; Zimmermann-Steffens SG; von Gunten U
    Water Res; 2014 Jan; 48():15-42. PubMed ID: 24184020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorination of parabens: reaction kinetics and transformation product identification.
    Mao Q; Ji F; Wang W; Wang Q; Hu Z; Yuan S
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):23081-23091. PubMed ID: 27585586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ametryn degradation by aqueous chlorine: kinetics and reaction influences.
    Xu B; Gao NY; Cheng H; Hu CY; Xia SJ; Sun XF; Wang X; Yang S
    J Hazard Mater; 2009 Sep; 169(1-3):586-92. PubMed ID: 19423216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic modelling of the bromine-ammonia system: Formation and decomposition of bromamines.
    Mensah AT; Berne F; Allard S; Soreau S; Gallard H
    Water Res; 2022 Oct; 224():119058. PubMed ID: 36096028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine.
    Zhang T; Xu B; Wang A; Cui C
    Chemosphere; 2018 Mar; 195():673-682. PubMed ID: 29289012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elimination of chlorine-refractory carbamazepine by breakpoint chlorination: Reactive species and oxidation byproducts.
    Wang WL; Wu QY; Du Y; Huang N; Hu HY
    Water Res; 2018 Feb; 129():115-122. PubMed ID: 29145081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stability of chlorinated, brominated, and iodinated haloacetamides in drinking water.
    Ding S; Chu W; Krasner SW; Yu Y; Fang C; Xu B; Gao N
    Water Res; 2018 Oct; 142():490-500. PubMed ID: 29920459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Degradation Kinetics and Formation of Disinfection By-products During Linuron Chlorination in Drinking Water].
    Ling X; Hu CY; Cheng M; Gu J
    Huan Jing Ke Xue; 2015 May; 36(5):1668-73. PubMed ID: 26314114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter.
    Ye T; Xu B; Wang Z; Zhang TY; Hu CY; Lin L; Xia SJ; Gao NY
    Water Res; 2014 Dec; 66():390-398. PubMed ID: 25240119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of methylparaben during water chlorination: Effects of bromide and dissolved organic matter on reaction kinetics and transformation pathways.
    Yoom H; Shin J; Ra J; Son H; Ryu D; Kim C; Lee Y
    Sci Total Environ; 2018 Sep; 634():677-686. PubMed ID: 29642049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlorination and monochloramination of 3-aminophenol: kinetics and formation of first by-products.
    Abou Mehrez O; Dossier-Berne F; Legube B
    Environ Technol; 2015; 36(17):2255-63. PubMed ID: 25741590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.
    Fang J; Zhao Q; Fan C; Shang C; Fu Y; Zhang X
    Chemosphere; 2017 Sep; 183():582-588. PubMed ID: 28570902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous chlorination of carbamazepine: kinetic study and transformation product identification.
    Soufan M; Deborde M; Delmont A; Legube B
    Water Res; 2013 Sep; 47(14):5076-87. PubMed ID: 23891541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide.
    Criquet J; Allard S; Salhi E; Joll CA; Heitz A; von Gunten U
    Environ Sci Technol; 2012 Jul; 46(13):7350-7. PubMed ID: 22667818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorination and bromination of olefins: Kinetic and mechanistic aspects.
    Li J; Jiang J; Manasfi T; von Gunten U
    Water Res; 2020 Dec; 187():116424. PubMed ID: 33038657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.