These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 33599981)

  • 1. Loss of peripheral vestibular input alters the statistics of head movement experienced during natural self-motion.
    Zobeiri OA; Ostrander B; Roat J; Agrawal Y; Cullen KE
    J Physiol; 2021 Apr; 599(8):2239-2254. PubMed ID: 33599981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The statistics of the vestibular input experienced during natural self-motion differ between rodents and primates.
    Carriot J; Jamali M; Chacron MJ; Cullen KE
    J Physiol; 2017 Apr; 595(8):2751-2766. PubMed ID: 28083981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistics of the vestibular input experienced during natural self-motion: implications for neural processing.
    Carriot J; Jamali M; Chacron MJ; Cullen KE
    J Neurosci; 2014 Jun; 34(24):8347-57. PubMed ID: 24920638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibular Contributions to Primate Neck Postural Muscle Activity during Natural Motion.
    Mildren RL; Cullen KE
    J Neurosci; 2023 Mar; 43(13):2326-2337. PubMed ID: 36801822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual signals of head rotation induce gravity-dependent inferences of linear acceleration.
    Khosravi-Hashemi N; Forbes PA; Dakin CJ; Blouin JS
    J Physiol; 2019 Nov; 597(21):5231-5246. PubMed ID: 31483492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The vestibular system: multimodal integration and encoding of self-motion for motor control.
    Cullen KE
    Trends Neurosci; 2012 Mar; 35(3):185-96. PubMed ID: 22245372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects.
    Allum JH; Oude Nijhuis LB; Carpenter MG
    Exp Brain Res; 2008 Jan; 184(3):391-410. PubMed ID: 17849108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vestibular and cerebellar contribution to gaze optimality.
    Sağlam M; Glasauer S; Lehnen N
    Brain; 2014 Apr; 137(Pt 4):1080-94. PubMed ID: 24549962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of vestibular loss on head-on-trunk stability in individuals with vestibular schwannoma.
    Aryan R; Zobeiri OA; Millar JL; Schubert MC; Cullen KE
    Sci Rep; 2024 Feb; 14(1):3512. PubMed ID: 38347021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early vestibular processing does not discriminate active from passive self-motion if there is a discrepancy between predicted and actual proprioceptive feedback.
    Brooks JX; Cullen KE
    J Neurophysiol; 2014 Jun; 111(12):2465-78. PubMed ID: 24671531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways.
    Mitchell DE; Kwan A; Carriot J; Chacron MJ; Cullen KE
    Elife; 2018 Dec; 7():. PubMed ID: 30561328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vestibular motor control.
    Cullen KE
    Handb Clin Neurol; 2023; 195():31-54. PubMed ID: 37562876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of vestibular neurectomy and neural compensation on head movements in patients undergoing vestibular schwannoma resection.
    Zobeiri OA; Mischler GM; King SA; Lewis RF; Cullen KE
    Sci Rep; 2021 Jan; 11(1):517. PubMed ID: 33436776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The increased sensitivity of irregular peripheral canal and otolith vestibular afferents optimizes their encoding of natural stimuli.
    Schneider AD; Jamali M; Carriot J; Chacron MJ; Cullen KE
    J Neurosci; 2015 Apr; 35(14):5522-36. PubMed ID: 25855169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Head Motion is a Greater Motor Control Challenge than Transient Head Motion in Patients with Loss of Vestibular Function.
    Wang L; Zobeiri OA; Millar JL; Souza Silva W; Schubert MC; Cullen KE
    Neurorehabil Neural Repair; 2021 Oct; 35(10):890-902. PubMed ID: 34365845
    [No Abstract]   [Full Text] [Related]  

  • 16. Signal processing in the vestibular system during active versus passive head movements.
    Cullen KE; Roy JE
    J Neurophysiol; 2004 May; 91(5):1919-33. PubMed ID: 15069088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multisensory integration in early vestibular processing in mice: the encoding of passive vs. active motion.
    Medrea I; Cullen KE
    J Neurophysiol; 2013 Dec; 110(12):2704-17. PubMed ID: 24089394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing.
    Carriot J; Jamali M; Cullen KE; Chacron MJ
    PLoS One; 2017; 12(6):e0178664. PubMed ID: 28575032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution.
    Jamali M; Mitchell DE; Dale A; Carriot J; Sadeghi SG; Cullen KE
    J Physiol; 2014 Apr; 592(7):1565-80. PubMed ID: 24366259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal integration of self-motion cues in the vestibular system: active versus passive translations.
    Carriot J; Brooks JX; Cullen KE
    J Neurosci; 2013 Dec; 33(50):19555-66. PubMed ID: 24336720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.