BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 3360015)

  • 1. Control of pyruvate carboxylase activity by the pyridine-nucleotide redox state in mitochondria from rat liver.
    Siess EA; Banik E; Neugebauer S
    Eur J Biochem; 1988 Apr; 173(2):369-74. PubMed ID: 3360015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation by 3-hydroxybutyrate of pyruvate carboxylation in mitochondria from rat liver.
    Siess EA
    Eur J Biochem; 1985 Oct; 152(1):131-6. PubMed ID: 4043074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroperoxide-stimulated release of calcium from rat liver and AS-30D hepatoma mitochondria.
    Fiskum G; Pease A
    Cancer Res; 1986 Jul; 46(7):3459-63. PubMed ID: 3708577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reduction of glutathione disulfide produced by t-butyl hydroperoxide in respiring mitochondria.
    Liu H; Kehrer JP
    Free Radic Biol Med; 1996; 20(3):433-42. PubMed ID: 8720915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the pyridine nucleotide-linked Ca2+ release from mitochondria by respiratory substrates.
    Gogvadze V; Schweizer M; Richter C
    Cell Calcium; 1996 Jun; 19(6):521-6. PubMed ID: 8842519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the acceleration of CO2 production from pyruvate in liver mitochondria by HCO3-.
    Taguchi Y; Ono Y; Lin L; Storey BT; Dodgson SJ; Forster RE
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C92-100. PubMed ID: 9252446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of 2-oxoglutarate dehydrogenase in rat liver mitochondria by its substrate and t-butyl hydroperoxide.
    Rokutan K; Kawai K; Asada K
    J Biochem; 1987 Feb; 101(2):415-22. PubMed ID: 3584093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyridine-nucleotide oxidation, Ca2+ cycling and membrane damage during tert-butyl hydroperoxide metabolism by rat-liver mitochondria.
    Bellomo G; Martino A; Richelmi P; Moore GA; Jewell SA; Orrenius S
    Eur J Biochem; 1984 Apr; 140(1):1-6. PubMed ID: 6705788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites.
    Chernyak BV; Bernardi P
    Eur J Biochem; 1996 Jun; 238(3):623-30. PubMed ID: 8706660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of the so-called uncoupling effect of medium- and short-chain fatty acids.
    Schönfeld P; Wojtczak AB; Geelen MJ; Kunz W; Wojtczak L
    Biochim Biophys Acta; 1988 Dec; 936(3):280-8. PubMed ID: 3196710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of oxygen consumption promotes mitochondrial calcium accumulation, a process associated with, and causally linked to, enhanced formation of tert-butylhydroperoxide-induced DNA single-strand breaks.
    Guidarelli A; Brambilla L; Clementi E; Sciorati C; Cantoni O
    Exp Cell Res; 1997 Nov; 237(1):176-85. PubMed ID: 9417880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADH-linked substrate dependence of peroxide-induced respiratory inhibition and calcium efflux in isolated renal mitochondria.
    Vlessis AA
    J Biol Chem; 1990 Jan; 265(3):1448-53. PubMed ID: 2295640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria.
    Ashour B; Hansford RG
    Biochem J; 1983 Sep; 214(3):725-36. PubMed ID: 6138029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents.
    Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP
    Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of palmitoylcarnitine oxidation in isolated rat liver mitochondria. Role of the redox state of NAD(H).
    Latipää PM; Kärki TT; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1986 Feb; 875(2):293-300. PubMed ID: 3002483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species.
    Nieminen AL; Byrne AM; Herman B; Lemasters JJ
    Am J Physiol; 1997 Apr; 272(4 Pt 1):C1286-94. PubMed ID: 9142854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased flux through pyruvate dehydrogenase by thiol oxidation during t-butyl hydroperoxide metabolism in perfused rat liver.
    Crane D; Häussinger D; Graf P; Sies H
    Hoppe Seylers Z Physiol Chem; 1983 Aug; 364(8):977-87. PubMed ID: 6629333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria.
    Lötscher HR; Winterhalter KH; Carafoli E; Richter C
    J Biol Chem; 1980 Oct; 255(19):9325-30. PubMed ID: 6773965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The redox state of the nicotinamide-adenine dinucleotides in rat liver homogenates.
    Krebs HA; Gascoyne T
    Biochem J; 1968 Jul; 108(4):513-20. PubMed ID: 4299127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.