These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33600717)

  • 1. Synthesis of Stereoregular Telechelic Poly(phenylacetylene)s: Facile Terminal Chain-End Functionalization of Poly(phenylacetylene)s by Terminative Coupling with Acrylates and Acrylamides in Rhodium-Catalyzed Living Polymerization of Phenylacetylenes.
    Echizen K; Taniguchi T; Nishimura T; Maeda K
    J Am Chem Soc; 2021 Mar; 143(9):3604-3612. PubMed ID: 33600717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile and Versatile Synthesis of End-Functionalized Poly(phenylacetylene)s: A Multicomponent Catalytic System for Well-Controlled Living Polymerization of Phenylacetylenes.
    Taniguchi T; Yoshida T; Echizen K; Takayama K; Nishimura T; Maeda K
    Angew Chem Int Ed Engl; 2020 May; 59(22):8670-8680. PubMed ID: 32048422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Well-Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Water-Soluble Stereoregular Telechelic Poly(phenylacetylene)s.
    Echizen K; Taniguchi T; Nishimura T; Maeda K
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202202676. PubMed ID: 35411566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well-Controlled Living Polymerization of N-Propargylamides and Their Derivatives by Rhodium Catalysis.
    Ito K; Taniguchi T; Nishimura T; Maeda K
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202117234. PubMed ID: 35199450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodium(I) Complexes Bearing an Aryl-Substituted 1,3,5-Hexatriene Chain: Catalysts for Living Polymerization of Phenylacetylene and Potential Helical Chirality of 1,3,5-Hexatrienes.
    Sakamoto S; Taniguchi T; Sakata Y; Akine S; Nishimura T; Maeda K
    Angew Chem Int Ed Engl; 2021 Oct; 60(41):22201-22206. PubMed ID: 34355472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heck-type coupling vs. conjugate addition in phosphine-rhodium catalyzed reactions of aryl boronic acids with alpha,beta-unsaturated carbonyl compounds: a systematic investigation.
    Zou G; Guo J; Wang Z; Huang W; Tang J
    Dalton Trans; 2007 Jul; (28):3055-64. PubMed ID: 17622423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helical arrays of pendant fullerenes on optically active poly(phenylacetylene)s.
    Nishimura T; Maeda K; Ohsawa S; Yashima E
    Chemistry; 2005 Feb; 11(4):1181-90. PubMed ID: 15619724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remarkable Enhancement of the Enantioselectivity of an Organocatalyzed Asymmetric Henry Reaction Assisted by Helical Poly(phenylacetylene)s Bearing Cinchona Alkaloid Pendants via an Amide Linkage.
    Tang Z; Iida H; Hu HY; Yashima E
    ACS Macro Lett; 2012 Feb; 1(2):261-265. PubMed ID: 35578519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Rh(L-alaninate)(1,5-Cyclooctadiene)] Catalyzed Helix-Sense-Selective Polymerizations of Achiral Phenylacetylenes.
    Wang Q; Jia H; Shi Y; Ma L; Yang G; Wang Y; Xu S; Wang J; Zang Y; Aoki T
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and conformational analysis of poly(phenylacetylene)s with serinol-tethered carbohydrate appendages.
    Masubuchi K; Maehata M; Suzuki C; Matsuoka R; Sekiguchi M; Chigira N; Amano Y; Inokuchi M; Li Q; Hasegawa T
    Carbohydr Res; 2019 Jul; 481():23-30. PubMed ID: 31220628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thioacetate-Based Initiators for the Synthesis of Thiol-End-Functionalized Poly(2-oxazoline)s.
    Gil Alvaradejo G; Glassner M; Kumar R; Trouillet V; Welle A; Wang Y; de la Rosa VR; Sekula-Neuner S; Hirtz M; Hoogenboom R; Delaittre G
    Macromol Rapid Commun; 2020 Sep; 41(18):e2000320. PubMed ID: 33463837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rh(I)(2,5-norbornadiene)(biphenyl)(
    Loong Tan NS; Nealon GL; Turner GF; Moggach SA; Ogden MI; Massi M; Lowe AB
    ACS Macro Lett; 2020 Jan; 9(1):56-60. PubMed ID: 35638650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of structurally well-defined telechelic polymers by organostibine-mediated living radical polymerization: in situ generation of functionalized chain-transfer agents and selective omega-end-group transformations.
    Yamago S; Yamada T; Togai M; Ukai Y; Kayahara E; Pan N
    Chemistry; 2009; 15(4):1018-29. PubMed ID: 19086048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terminal-Selective Transesterification of Chlorine-Capped Poly(Methyl Methacrylate)s: A Modular Approach to Telechelic and Pinpoint-Functionalized Polymers.
    Ogura Y; Terashima T; Sawamoto M
    J Am Chem Soc; 2016 Apr; 138(15):5012-5. PubMed ID: 27040865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helix-Sense-Selective Polymerization of 3,5-bis(hydroxymethyl)phenylacetylene Rigidly Bearing Galvinoxyl Residues and Their Chiroptical Properties.
    Shi Z; Wang J; Teraguchi M; Aoki T; Kaneko T
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31766269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-supported organometallic rhodium quinonoid nanocatalysts for stereoselective polymerization of phenylacetylene.
    Park KH; Jang K; Son SU; Sweigart DA
    J Am Chem Soc; 2006 Jul; 128(27):8740-1. PubMed ID: 16819862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Synthesis of Poly(vinyl ether)-Grafted Poly(phenylacetylene)s by a Combination of Living Coordination Polymerization and Living Cationic Polymerization.
    Motoyanagi J; Kawamura S; Minoda M
    ACS Omega; 2020 Mar; 5(11):5854-5861. PubMed ID: 32226865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic α-Hydroarylation of Acrylates and Acrylamides via an Interrupted Hydrodehalogenation Reaction.
    Vasquez AM; Gurak JA; Joe CL; Cherney EC; Engle KM
    J Am Chem Soc; 2020 Jun; 142(23):10477-10484. PubMed ID: 32379433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of plant and bacterial lectin binding affinities by three-dimensional organized cluster glycosides constructed on helical poly(phenylacetylene) backbones.
    Otsuka I; Blanchard B; Borsali R; Imberty A; Kakuchi T
    Chembiochem; 2010 Nov; 11(17):2399-408. PubMed ID: 21053235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switching of macromolecular helicity of optically active poly(phenylacetylene)s bearing cyclodextrin pendants induced by various external stimuli.
    Maeda K; Mochizuki H; Watanabe M; Yashima E
    J Am Chem Soc; 2006 Jun; 128(23):7639-50. PubMed ID: 16756321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.