These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 33600762)

  • 1. Loss of nigral excitation of cholinergic interneurons contributes to parkinsonian motor impairments.
    Cai Y; Nielsen BE; Boxer EE; Aoto J; Ford CP
    Neuron; 2021 Apr; 109(7):1137-1149.e5. PubMed ID: 33600762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex Movement Control in a Rat Model of Parkinsonian Falls: Bidirectional Control by Striatal Cholinergic Interneurons.
    Avila C; Kucinski A; Sarter M
    J Neurosci; 2020 Jul; 40(31):6049-6067. PubMed ID: 32554512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strength of cholinergic tone dictates the polarity of dopamine D2 receptor modulation of striatal cholinergic interneuron excitability in DYT1 dystonia.
    Scarduzio M; Zimmerman CN; Jaunarajs KL; Wang Q; Standaert DG; McMahon LL
    Exp Neurol; 2017 Sep; 295():162-175. PubMed ID: 28587876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine Cells Differentially Regulate Striatal Cholinergic Transmission across Regions through Corelease of Dopamine and Glutamate.
    Cai Y; Ford CP
    Cell Rep; 2018 Dec; 25(11):3148-3157.e3. PubMed ID: 30540946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated Postnatal Maturation of Striatal Cholinergic Interneurons and Dopamine Release Dynamics in Mice.
    McGuirt AF; Post MR; Pigulevskiy I; Sulzer D; Lieberman OJ
    J Neurosci; 2021 Apr; 41(16):3597-3609. PubMed ID: 33664134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of the M
    Moehle MS; Conn PJ
    Mov Disord; 2019 Aug; 34(8):1089-1099. PubMed ID: 31211471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease.
    Ztaou S; Maurice N; Camon J; Guiraudie-Capraz G; Kerkerian-Le Goff L; Beurrier C; Liberge M; Amalric M
    J Neurosci; 2016 Aug; 36(35):9161-72. PubMed ID: 27581457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine Deficiency Reduces Striatal Cholinergic Interneuron Function in Models of Parkinson's Disease.
    McKinley JW; Shi Z; Kawikova I; Hur M; Bamford IJ; Sudarsana Devi SP; Vahedipour A; Darvas M; Bamford NS
    Neuron; 2019 Sep; 103(6):1056-1072.e6. PubMed ID: 31324539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic Transmission at Muscarinic Synapses in the Striatum Is Driven Equally by Cortical and Thalamic Inputs.
    Mamaligas AA; Barcomb K; Ford CP
    Cell Rep; 2019 Jul; 28(4):1003-1014.e3. PubMed ID: 31340139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine-dependent long-term depression at subthalamo-nigral synapses is lost in experimental parkinsonism.
    Dupuis JP; Feyder M; Miguelez C; Garcia L; Morin S; Choquet D; Hosy E; Bezard E; Fisone G; Bioulac BH; Baufreton J
    J Neurosci; 2013 Sep; 33(36):14331-41. PubMed ID: 24005286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson's Disease.
    Divito CB; Steece-Collier K; Case DT; Williams SP; Stancati JA; Zhi L; Rubio ME; Sortwell CE; Collier TJ; Sulzer D; Edwards RH; Zhang H; Seal RP
    J Neurosci; 2015 Nov; 35(45):14983-99. PubMed ID: 26558771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA receptors are altered in the substantia nigra pars reticulata and their blockade ameliorates motor deficits in experimental parkinsonism.
    Sitzia G; Mantas I; Zhang X; Svenningsson P; Chergui K
    Neuropharmacology; 2020 Sep; 174():108136. PubMed ID: 32474027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting dopamine-acetylcholine imbalance in Parkinson's disease: Glutamate co-transmission as an exciting partner in crime.
    Zhang YF; Cragg SJ
    Neuron; 2021 Apr; 109(7):1070-1071. PubMed ID: 33831360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum.
    Threlfell S; Clements MA; Khodai T; Pienaar IS; Exley R; Wess J; Cragg SJ
    J Neurosci; 2010 Mar; 30(9):3398-408. PubMed ID: 20203199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striatal cholinergic cell ablation attenuates L-DOPA induced dyskinesia in Parkinsonian mice.
    Won L; Ding Y; Singh P; Kang UJ
    J Neurosci; 2014 Feb; 34(8):3090-4. PubMed ID: 24553948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective remodeling of glutamatergic transmission to striatal cholinergic interneurons after dopamine depletion.
    Aceves Buendia JJ; Tiroshi L; Chiu WH; Goldberg JA
    Eur J Neurosci; 2019 Mar; 49(6):824-833. PubMed ID: 28922504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased GABAergic transmission in neuropeptide Y-expressing neurons in the dopamine-depleted murine striatum.
    Rubi L; Fritschy JM
    J Neurophysiol; 2020 Apr; 123(4):1496-1503. PubMed ID: 32159408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholine-dopamine balance hypothesis in the striatum: an update.
    Aosaki T; Miura M; Suzuki T; Nishimura K; Masuda M
    Geriatr Gerontol Int; 2010 Jul; 10 Suppl 1():S148-57. PubMed ID: 20590830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Striatal and nigral muscarinic type 1 and type 4 receptors modulate levodopa-induced dyskinesia and striato-nigral pathway activation in 6-hydroxydopamine hemilesioned rats.
    Brugnoli A; PisanĂ² CA; Morari M
    Neurobiol Dis; 2020 Oct; 144():105044. PubMed ID: 32798726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GluN2D-containing NMDA receptors inhibit neurotransmission in the mouse striatum through a cholinergic mechanism: implication for Parkinson's disease.
    Zhang X; Feng ZJ; Chergui K
    J Neurochem; 2014 May; 129(4):581-90. PubMed ID: 24475872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.