BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33600785)

  • 21. Impact of the mitochondrial genetic background in complex III deficiency.
    Gil Borlado MC; Moreno Lastres D; Gonzalez Hoyuela M; Moran M; Blazquez A; Pello R; Marin Buera L; Gabaldon T; Garcia Peñas JJ; Martín MA; Arenas J; Ugalde C
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20862300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics.
    Haynes SE; Majmudar JD; Martin BR
    Anal Chem; 2018 Aug; 90(15):8722-8726. PubMed ID: 29989796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complete Native Stable Isotope Labeling by Amino Acids of Saccharomyces cerevisiae for Global Proteomic Analysis.
    Dannenmaier S; Stiller SB; Morgenstern M; Lübbert P; Oeljeklaus S; Wiedemann N; Warscheid B
    Anal Chem; 2018 Sep; 90(17):10501-10509. PubMed ID: 30102515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronic high glucose induced INS-1β cell mitochondrial dysfunction: a comparative mitochondrial proteome with SILAC.
    Chen X; Cui Z; Wei S; Hou J; Xie Z; Peng X; Li J; Cai T; Hang H; Yang F
    Proteomics; 2013 Oct; 13(20):3030-9. PubMed ID: 23956156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. C1orf163/RESA1 is a novel mitochondrial intermembrane space protein connected to respiratory chain assembly.
    Kozjak-Pavlovic V; Prell F; Thiede B; Götz M; Wosiek D; Ott C; Rudel T
    J Mol Biol; 2014 Feb; 426(4):908-20. PubMed ID: 24333015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomic Profiling of Cell Death: Stable Isotope Labeling and Mass Spectrometry Analysis.
    Webb AI
    Methods Mol Biol; 2016; 1419():277-86. PubMed ID: 27108446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation of respiratory chain biogenesis to cytochrome c oxidase deficiency caused by SURF1 gene mutations.
    Kovářová N; Cížková Vrbacká A; Pecina P; Stránecký V; Pronicka E; Kmoch S; Houštěk J
    Biochim Biophys Acta; 2012 Jul; 1822(7):1114-24. PubMed ID: 22465034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved SILAC method for double labeling of bacterial proteome.
    Han J; Yi S; Zhao X; Zheng Y; Yang D; Du G; Yang XY; He QY; Sun X
    J Proteomics; 2019 Mar; 194():89-98. PubMed ID: 30553074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. iTRAQ analysis of a cell culture model for malignant transformation, including comparison with 2D-PAGE and SILAC.
    Pütz SM; Boehm AM; Stiewe T; Sickmann A
    J Proteome Res; 2012 Apr; 11(4):2140-53. PubMed ID: 22313033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative proteomics using stable isotope labeling with amino acids in cell culture.
    Harsha HC; Molina H; Pandey A
    Nat Protoc; 2008; 3(3):505-16. PubMed ID: 18323819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spike-In SILAC Approach for Proteomic Analysis of Ex Vivo Microglia.
    Pinho JPC; Bell-Temin H; Liu B; Stevens SM
    Methods Mol Biol; 2017; 1598():295-312. PubMed ID: 28508369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic evaluation of label-free and super-SILAC quantification for proteome expression analysis.
    Tebbe A; Klammer M; Sighart S; Schaab C; Daub H
    Rapid Commun Mass Spectrom; 2015 May; 29(9):795-801. PubMed ID: 26377007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relative protein quantification by isobaric SILAC with immonium ion splitting (ISIS).
    Colzani M; Schütz F; Potts A; Waridel P; Quadroni M
    Mol Cell Proteomics; 2008 May; 7(5):927-37. PubMed ID: 18165257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assembly of nuclear DNA-encoded subunits into mitochondrial complex IV, and their preferential integration into supercomplex forms in patient mitochondria.
    Lazarou M; Smith SM; Thorburn DR; Ryan MT; McKenzie M
    FEBS J; 2009 Nov; 276(22):6701-13. PubMed ID: 19843159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rare cell proteomic reactor applied to stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics study of human embryonic stem cell differentiation.
    Tian R; Wang S; Elisma F; Li L; Zhou H; Wang L; Figeys D
    Mol Cell Proteomics; 2011 Feb; 10(2):M110.000679. PubMed ID: 20530636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative Proteomic Analysis in Candida albicans Using SILAC-Based Mass Spectrometry.
    Kaneva IN; Longworth J; Sudbery PE; Dickman MJ
    Proteomics; 2018 Mar; 18(5-6):e1700278. PubMed ID: 29280593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stable isotope labeling with amino acids in Drosophila for quantifying proteins and modifications.
    Xu P; Tan H; Duong DM; Yang Y; Kupsco J; Moberg KH; Li H; Jin P; Peng J
    J Proteome Res; 2012 Sep; 11(9):4403-12. PubMed ID: 22830426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics.
    Geiger T; Wisniewski JR; Cox J; Zanivan S; Kruger M; Ishihama Y; Mann M
    Nat Protoc; 2011 Feb; 6(2):147-57. PubMed ID: 21293456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative Proteomics in Drosophila with Holidic Stable-Isotope Labeling of Amino Acids in Fruit Flies (SILAF).
    Schober FA; Atanassov I; Freyer C; Wredenberg A
    Methods Mol Biol; 2021; 2192():75-87. PubMed ID: 33230767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complexome Profiling of Plant Mitochondrial Fractions.
    Schröder L; Eubel H; Braun HP
    Methods Mol Biol; 2022; 2363():101-110. PubMed ID: 34545489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.