These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33600839)

  • 1. In situ AFM detection of the stiffness of the in situ exposed cell nucleus.
    Wang K; Qin Y; Chen Y
    Biochim Biophys Acta Mol Cell Res; 2021 Apr; 1868(5):118985. PubMed ID: 33600839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell stiffness determined by atomic force microscopy and its correlation with cell motility.
    Luo Q; Kuang D; Zhang B; Song G
    Biochim Biophys Acta; 2016 Sep; 1860(9):1953-60. PubMed ID: 27288584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of Young's modulus in mesenchymal stromal cells during osteogenesis measured by atomic force microscopy.
    Yen MH; Chen YH; Liu YS; Lee OK
    Biochem Biophys Res Commun; 2020 Jun; 526(3):827-832. PubMed ID: 32273088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Endothelial Cell Adherence and Elastic Modulus by Substrate Stiffness.
    Jalali S; Tafazzoli-Shadpour M; Haghighipour N; Omidvar R; Safshekan F
    Cell Commun Adhes; 2015; 22(2-6):79-89. PubMed ID: 27960555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal development of the endothelial glycocalyx layer and its mechanical property in vitro.
    Bai K; Wang W
    J R Soc Interface; 2012 Sep; 9(74):2290-8. PubMed ID: 22417911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ mechanical characterization of the cell nucleus by atomic force microscopy.
    Liu H; Wen J; Xiao Y; Liu J; Hopyan S; Radisic M; Simmons CA; Sun Y
    ACS Nano; 2014 Apr; 8(4):3821-8. PubMed ID: 24673613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating Young's Modulus of Single Yeast Cells Based on Compression Using an Atomic Force Microscope with a Flat Tip.
    Chang D; Hirate T; Uehara C; Maruyama H; Uozumi N; Arai F
    Microsc Microanal; 2021 Apr; 27(2):392-399. PubMed ID: 33446296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measured pulmonary arterial tissue stiffness is highly sensitive to AFM indenter dimensions.
    Sicard D; Fredenburgh LE; Tschumperlin DJ
    J Mech Behav Biomed Mater; 2017 Oct; 74():118-127. PubMed ID: 28595103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A feasible method for independently evaluating the mechanical properties of glial LC and RGC axons by combining atomic force microscopy measurement with image segmentation.
    Liu L; Liu Y; Li T; Li L; Qian X; Liu Z
    J Mech Behav Biomed Mater; 2022 Feb; 126():105041. PubMed ID: 34953434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells.
    Fuhrmann A; Staunton JR; Nandakumar V; Banyai N; Davies PC; Ros R
    Phys Biol; 2011 Feb; 8(1):015007. PubMed ID: 21301067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling native pulmonary basement membrane stiffness using atomic force microscopy.
    Hartmann B; Fleischhauer L; Nicolau M; Jensen THL; Taran FA; Clausen-Schaumann H; Reuten R
    Nat Protoc; 2024 May; 19(5):1498-1528. PubMed ID: 38429517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examination of Alzheimer's disease by a combination of electrostatic force and mechanical measurement.
    Zhao W; Cui W; Xu S; Cheong LZ; Shen C
    J Microsc; 2019 Jul; 275(1):66-72. PubMed ID: 31038737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Young's Modulus Determination of Normal and Glaucomatous Human Iris.
    Narayanaswamy A; Nai MH; Nongpiur ME; Htoon HM; Thomas A; Sangtam T; Lim CT; Wong TT; Aung T
    Invest Ophthalmol Vis Sci; 2019 Jun; 60(7):2690-2695. PubMed ID: 31242291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Young's modulus of nanoconfined liquids?
    Khan SH; Hoffmann PM
    J Colloid Interface Sci; 2016 Jul; 473():93-9. PubMed ID: 27060229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic Force Microscopy for Live-Cell and Hydrogel Measurement.
    Whitehead AJ; Kirkland NJ; Engler AJ
    Methods Mol Biol; 2021; 2299():217-226. PubMed ID: 34028746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of biomechanical properties of cell lines on altered matrix stiffness using atomic force microscopy.
    Wala J; Das S
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1523-1536. PubMed ID: 31907681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity of nanomechanical properties of the human umbilical vein endothelial cell surface.
    Starodubtseva MN; Nadyrov EA; Shkliarava NM; Tsukanava AU; Starodubtsev IE; Kondrachyk AN; Matveyenkau MV; Nedoseikina MS
    Microvasc Res; 2021 Jul; 136():104168. PubMed ID: 33845104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of Cholesterol Repletion Effect on Nanomechanical Properties of Human Umbilical Vein Endothelial Cell Via Rapid Broadband Atomic Force Microscopy.
    Yan B; Ren J; Liu Y; Huang H; Zheng X; Zou Q
    J Biomech Eng; 2017 Mar; 139(3):. PubMed ID: 27893051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring Nuclear Mechanics with Atomic Force Microscopy.
    Dos Santos Á; Rehfeldt F; Toseland CP
    Methods Mol Biol; 2022; 2476():171-181. PubMed ID: 35635704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of measurement parameters on the cancerous cell nucleus characterisation by atomic force microscopy in vitro.
    Zhu J; Tian Y; Yan J; Hu J; Wang Z; Liu X
    J Microsc; 2022 Jul; 287(1):3-18. PubMed ID: 35411607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.