These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 33600880)
1. Aerogels in drug delivery: From design to application. García-González CA; Sosnik A; Kalmár J; De Marco I; Erkey C; Concheiro A; Alvarez-Lorenzo C J Control Release; 2021 Apr; 332():40-63. PubMed ID: 33600880 [TBL] [Abstract][Full Text] [Related]
2. Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels - Implications in drug delivery. Kéri M; Forgács A; Papp V; Bányai I; Veres P; Len A; Dudás Z; Fábián I; Kalmár J Acta Biomater; 2020 Mar; 105():131-145. PubMed ID: 31953196 [TBL] [Abstract][Full Text] [Related]
3. Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Veres P; López-Periago AM; Lázár I; Saurina J; Domingo C Int J Pharm; 2015 Dec; 496(2):360-70. PubMed ID: 26484894 [TBL] [Abstract][Full Text] [Related]
4. Polysaccharide-based aerogel microspheres for oral drug delivery. García-González CA; Jin M; Gerth J; Alvarez-Lorenzo C; Smirnova I Carbohydr Polym; 2015 Mar; 117():797-806. PubMed ID: 25498702 [TBL] [Abstract][Full Text] [Related]
5. Advances in Aerogels Formulations for Pulmonary Targeted Delivery of Therapeutic Agents: Safety, Efficacy and Regulatory Aspects. Verma S; Sharma PK; Malviya R; Das S Curr Pharm Biotechnol; 2024; 25(15):1939-1951. PubMed ID: 38251702 [TBL] [Abstract][Full Text] [Related]
6. Tuning bio-aerogel properties for controlling theophylline delivery. Part 1: Pectin aerogels. Groult S; Buwalda S; Budtova T Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112148. PubMed ID: 34082959 [TBL] [Abstract][Full Text] [Related]
7. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Gonçalves VS; Gurikov P; Poejo J; Matias AA; Heinrich S; Duarte CM; Smirnova I Eur J Pharm Biopharm; 2016 Oct; 107():160-70. PubMed ID: 27393563 [TBL] [Abstract][Full Text] [Related]
8. Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. Gaudio PD; Auriemma G; Mencherini T; Porta GD; Reverchon E; Aquino RP J Pharm Sci; 2013 Jan; 102(1):185-94. PubMed ID: 23150457 [TBL] [Abstract][Full Text] [Related]
9. Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Smirnova I; Suttiruengwong S; Seiler M; Arlt W Pharm Dev Technol; 2004 Nov; 9(4):443-52. PubMed ID: 15581080 [TBL] [Abstract][Full Text] [Related]
10. Aerogels in Chemical Engineering: Strategies Toward Tailor-Made Aerogels. Smirnova I; Gurikov P Annu Rev Chem Biomol Eng; 2017 Jun; 8():307-334. PubMed ID: 28375771 [TBL] [Abstract][Full Text] [Related]
11. Drying Using Supercritical Fluid Technology as a Potential Method for Preparation of Chitosan Aerogel Microparticles. Obaidat RM; Tashtoush BM; Bayan MF; Al Bustami RT; Alnaief M AAPS PharmSciTech; 2015 Dec; 16(6):1235-44. PubMed ID: 25761387 [TBL] [Abstract][Full Text] [Related]
12. Supercritical impregnation of starch aerogels with quercetin: Fungistatic effect and release modelling with a compartmental model. Mottola S; Iannone G; Giordano M; González-Garcinuño Á; Jiménez A; Tabernero A; Martín Del Valle E; De Marco I Int J Biol Macromol; 2023 Dec; 253(Pt 6):127406. PubMed ID: 37832612 [TBL] [Abstract][Full Text] [Related]
13. Tuning bio-aerogel properties. Part 3: Exploring silica-pectin composite aerogels for drug delivery. Groult S; Buwalda S; Budtova T Biomater Adv; 2024 Oct; 163():213954. PubMed ID: 38996543 [TBL] [Abstract][Full Text] [Related]
15. Di-aldehyde tunicate cellulose nanocrystal (D-tCNC) aerogels for drug delivery: Effect of D-tCNC composition on aerogel structure and release properties. Xu D; Cheng Y; Lin W; Han S; Wu S; Mondal AK; Li A; Huang F Int J Biol Macromol; 2024 Jan; 256(Pt 1):128345. PubMed ID: 38007011 [TBL] [Abstract][Full Text] [Related]
16. Investigation of Carrageenan Aerogel Microparticles as a Potential Drug Carrier. Obaidat RM; Alnaief M; Mashaqbeh H AAPS PharmSciTech; 2018 Jul; 19(5):2226-2236. PubMed ID: 29736886 [TBL] [Abstract][Full Text] [Related]
17. An emerging platform for drug delivery: aerogel based systems. Ulker Z; Erkey C J Control Release; 2014 Mar; 177():51-63. PubMed ID: 24394377 [TBL] [Abstract][Full Text] [Related]
18. Tuning bio-aerogel properties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels. Groult S; Buwalda S; Budtova T Biomater Adv; 2022 Apr; 135():212732. PubMed ID: 35929208 [TBL] [Abstract][Full Text] [Related]
19. Creating and exploring carboxymethyl cellulose aerogels as drug delivery devices. Yu S; Budtova T Carbohydr Polym; 2024 May; 332():121925. PubMed ID: 38431419 [TBL] [Abstract][Full Text] [Related]
20. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Veronovski A; Tkalec G; Knez Ž; Novak Z Carbohydr Polym; 2014 Nov; 113():272-8. PubMed ID: 25256485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]