These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33601086)

  • 1. A time-dependent mechanobiology-based topology optimization to enhance bone growth in tissue scaffolds.
    Wu C; Fang J; Entezari A; Sun G; Swain MV; Xu Y; Steven GP; Li Q
    J Biomech; 2021 Mar; 117():110233. PubMed ID: 33601086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Bone Scaffold Porosity Distributions.
    Poh PSP; Valainis D; Bhattacharya K; van Griensven M; Dondl P
    Sci Rep; 2019 Jun; 9(1):9170. PubMed ID: 31235704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration.
    Metz C; Duda GN; Checa S
    Acta Biomater; 2020 Jan; 101():117-127. PubMed ID: 31669697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone.
    Wieding J; Wolf A; Bader R
    J Mech Behav Biomed Mater; 2014 Sep; 37():56-68. PubMed ID: 24942627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments.
    Uth N; Mueller J; Smucker B; Yousefi AM
    Biofabrication; 2017 Feb; 9(1):015023. PubMed ID: 28222045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach.
    Boccaccio A; Uva AE; Fiorentino M; Mori G; Monno G
    PLoS One; 2016; 11(1):e0146935. PubMed ID: 26771746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanobiological computer optimization framework to design scaffolds to enhance bone regeneration.
    Perier-Metz C; Duda GN; Checa S
    Front Bioeng Biotechnol; 2022; 10():980727. PubMed ID: 36159680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mechanobiology-based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds.
    Boccaccio A; Uva AE; Fiorentino M; Lamberti L; Monno G
    Int J Biol Sci; 2016; 12(1):1-17. PubMed ID: 26722213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.
    Dias MR; Guedes JM; Flanagan CL; Hollister SJ; Fernandes PR
    Med Eng Phys; 2014 Apr; 36(4):448-57. PubMed ID: 24636449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology - driven algorithm.
    Boccaccio A; Fiorentino M; Uva AE; Laghetti LN; Monno G
    Mater Sci Eng C Mater Biol Appl; 2018 Feb; 83():51-66. PubMed ID: 29208288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study on agarose acetate and PDLLA scaffold for rabbit femur defect regeneration.
    Zhao R; Xu Z; Li B; Chen T; Mei N; Wang C; Zhou Z; You L; Wu C; Wang X; Tang S
    Biomed Mater; 2019 Sep; 14(6):065007. PubMed ID: 31422950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechano-driven regeneration predicts response variations in large animal model based on scaffold implantation site and individual mechano-sensitivity.
    Nasello G; Vautrin A; Pitocchi J; Wesseling M; Kuiper JH; Pérez MÁ; García-Aznar JM
    Bone; 2021 Mar; 144():115769. PubMed ID: 33276152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of structural load-bearing scaffolds on mechanical load- and BMP-2-mediated bone regeneration.
    McDermott AM; Mason DE; Lin ASP; Guldberg RE; Boerckel JD
    J Mech Behav Biomed Mater; 2016 Sep; 62():169-181. PubMed ID: 27208510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep.
    Pobloth AM; Checa S; Razi H; Petersen A; Weaver JC; Schmidt-Bleek K; Windolf M; Tatai AÁ; Roth CP; Schaser KD; Duda GN; Schwabe P
    Sci Transl Med; 2018 Jan; 10(423):. PubMed ID: 29321260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bread-Derived Bioactive Porous Scaffolds: An Innovative and Sustainable Approach to Bone Tissue Engineering.
    Fiume E; Serino G; Bignardi C; Verné E; Baino F
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31416299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.
    Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL
    J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchically Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene Oxide for Rapid Bone Ingrowth and Repair.
    Zhou K; Yu P; Shi X; Ling T; Zeng W; Chen A; Yang W; Zhou Z
    ACS Nano; 2019 Aug; 13(8):9595-9606. PubMed ID: 31381856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.