These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33601090)

  • 1. Fabrication and characterization of stable oleofoam based on medium-long chain diacylglycerol and β-sitosterol.
    Qiu C; Lei M; Lee WJ; Zhang N; Wang Y
    Food Chem; 2021 Jul; 350():129275. PubMed ID: 33601090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilisation of oleofoams by lauric acid and its glycerol esters.
    Qiu C; Wang S; Wang Y; Lee WJ; Fu J; Binks BP; Wang Y
    Food Chem; 2022 Aug; 386():132776. PubMed ID: 35509162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailored rigidity of W/O Pickering emulsions using diacylglycerol-based surface-active solid lipid nanoparticles.
    Li G; Lee WJ; Tan CP; Lai OM; Wang Y; Qiu C
    Food Funct; 2021 Nov; 12(23):11732-11746. PubMed ID: 34698749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of Pulse Protein Foam-Templated Oleogels into Oleofoams for Improved Baking Application.
    Mohanan A; Harrison K; Cooper DML; Nickerson MT; Ghosh S
    Foods; 2022 Sep; 11(18):. PubMed ID: 36141019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Characterization of Oleofoams Composed of Tribehenoyl-glycerol: Toward a Stable and Higher Air-content Colloidal System.
    Matsuo K; Fujii Y; Ueno S
    J Oleo Sci; 2023 Aug; 72(9):819-829. PubMed ID: 37574284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach for the development of edible oleofoams using double network oleogelation systems.
    Tirgarian B; Farmani J
    Food Chem; 2023 Nov; 426():136634. PubMed ID: 37348400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oleofoams: Properties of Crystal-Coated Bubbles from Whipped Oleogels-Evidence for Pickering Stabilization.
    Gunes DZ; Murith M; Godefroid J; Pelloux C; Deyber H; Schafer O; Breton O
    Langmuir; 2017 Feb; 33(6):1563-1575. PubMed ID: 28139122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oleofoams stabilized by monoacylglycerides: Impact of chain length and concentration.
    Grossi M; Fang B; Rao J; Chen B
    Food Res Int; 2023 Jul; 169():112914. PubMed ID: 37254346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Producing superior oleofoams: Unraveling the impact of oil type, surfactant concentration, and production temperature on foam stability and functional characteristics.
    Alhasan FH; Tehrani MM; Varidi M
    Food Chem X; 2024 Mar; 21():101033. PubMed ID: 38205159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Stable Oleofoams with Sorbitan Ester Surfactants.
    Liu Y; Binks BP
    Langmuir; 2022 Dec; 38(48):14779-14788. PubMed ID: 36410861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of X-ray Microcomputed Tomography for the Static and Dynamic Characterization of the Microstructure of Oleofoams.
    Metilli L; Storm M; Marathe S; Lazidis A; Marty-Terrade S; Simone E
    Langmuir; 2022 Feb; 38(4):1638-1650. PubMed ID: 35050635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable volatile release from organogel-emulsions based on the self-assembly of β-sitosterol and γ-oryzanol.
    Chen XW; Chen YJ; Wang JM; Guo J; Yin SW; Yang XQ
    Food Chem; 2017 Apr; 221():1491-1498. PubMed ID: 27979120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Purification Methods on the Physicochemical and Thermodynamic Properties and Crystallization Kinetics of Medium-Chain, Medium-Long-Chain, and Long-Chain Diacylglycerols.
    Wang S; Lee WJ; Wang Y; Tan CP; Lai OM; Wang Y
    J Agric Food Chem; 2020 Aug; 68(31):8391-8403. PubMed ID: 32511921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal-reversible lacquer wax-based oleofoams in dual stabilization with high ambient stability.
    Gu X; Du L; Meng Z
    Food Res Int; 2023 May; 167():112650. PubMed ID: 37087239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled volatile release from β-sitosterol-based oleogels based on different self-assembly mechanisms.
    Wang S; Liu G
    Food Chem; 2023 Nov; 425():136506. PubMed ID: 37290236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of diacylglycerol interfacial crystallization on the physical stability of water-in-oil emulsions.
    Yang J; Qiu C; Li G; Lee WJ; Tan CP; Lai OM; Wang Y
    Food Chem; 2020 Oct; 327():127014. PubMed ID: 32434126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oleofoams: The impact of formulating air-in-oil systems from a lipid oxidation perspective.
    Ribourg-Birault L; Meynier A; Vergé S; Sallan E; Kermarrec A; Falourd X; Berton-Carabin C; Fameau AL
    Curr Res Food Sci; 2024; 8():100690. PubMed ID: 38328464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel colloidal particles and natural small molecular surfactants co-stabilized Pickering emulsions with hierarchical interfacial structure: Enhanced stability and controllable lipolysis.
    Wei Y; Tong Z; Dai L; Ma P; Zhang M; Liu J; Mao L; Yuan F; Gao Y
    J Colloid Interface Sci; 2020 Mar; 563():291-307. PubMed ID: 31884251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial behavior, gelation and foaming properties of diacylglycerols with different acyl chain lengths and isomer ratios.
    Li Z; Ying Lee Y; Wang Y; Qiu C
    Food Chem; 2023 Nov; 427():136696. PubMed ID: 37392626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol.
    Lacatusu I; Badea N; Stan R; Meghea A
    Nanotechnology; 2012 Nov; 23(45):455702. PubMed ID: 23064178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.