BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33601309)

  • 1. Design of pyrido[2,3-d]pyrimidin-7-one inhibitors of receptor interacting protein kinase-2 (RIPK2) and nucleotide-binding oligomerization domain (NOD) cell signaling.
    Nikhar S; Siokas I; Schlicher L; Lee S; Gyrd-Hansen M; Degterev A; Cuny GD
    Eur J Med Chem; 2021 Apr; 215():113252. PubMed ID: 33601309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor-interacting protein kinase 2 (RIPK2) and nucleotide-binding oligomerization domain (NOD) cell signaling inhibitors based on a 3,5-diphenyl-2-aminopyridine scaffold.
    Suebsuwong C; Dai B; Pinkas DM; Duddupudi AL; Li L; Bufton JC; Schlicher L; Gyrd-Hansen M; Hu M; Bullock AN; Degterev A; Cuny GD
    Eur J Med Chem; 2020 Aug; 200():112417. PubMed ID: 32505849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.
    Canning P; Ruan Q; Schwerd T; Hrdinka M; Maki JL; Saleh D; Suebsuwong C; Ray S; Brennan PE; Cuny GD; Uhlig HH; Gyrd-Hansen M; Degterev A; Bullock AN
    Chem Biol; 2015 Sep; 22(9):1174-84. PubMed ID: 26320862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small molecule inhibitors reveal an indispensable scaffolding role of RIPK2 in NOD2 signaling.
    Hrdinka M; Schlicher L; Dai B; Pinkas DM; Bufton JC; Picaud S; Ward JA; Rogers C; Suebsuwong C; Nikhar S; Cuny GD; Huber KV; Filippakopoulos P; Bullock AN; Degterev A; Gyrd-Hansen M
    EMBO J; 2018 Sep; 37(17):. PubMed ID: 30026309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors.
    Suebsuwong C; Pinkas DM; Ray SS; Bufton JC; Dai B; Bullock AN; Degterev A; Cuny GD
    Bioorg Med Chem Lett; 2018 Feb; 28(4):577-583. PubMed ID: 29409752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the nucleotide oligomerization domain signaling pathway by the non-bacterially derived xanthone drug 5'6-dimethylxanthenone-4-acetic acid (Vadimezan).
    Cheng G; Sun J; Fridlender ZG; Wang LC; Ching LM; Albelda SM
    J Biol Chem; 2010 Apr; 285(14):10553-62. PubMed ID: 20118240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A regulatory region on RIPK2 is required for XIAP binding and NOD signaling activity.
    Heim VJ; Dagley LF; Stafford CA; Hansen FM; Clayer E; Bankovacki A; Webb AI; Lucet IS; Silke J; Nachbur U
    EMBO Rep; 2020 Nov; 21(11):e50400. PubMed ID: 32954645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of XIAP-RIP2 Association Blocks NOD2-Mediated Inflammatory Signaling.
    Goncharov T; Hedayati S; Mulvihill MM; Izrael-Tomasevic A; Zobel K; Jeet S; Fedorova AV; Eidenschenk C; deVoss J; Yu K; Shaw AS; Kirkpatrick DS; Fairbrother WJ; Deshayes K; Vucic D
    Mol Cell; 2018 Feb; 69(4):551-565.e7. PubMed ID: 29452636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postbiotics for NOD2 require nonhematopoietic RIPK2 to improve blood glucose and metabolic inflammation in mice.
    Cavallari JF; Barra NG; Foley KP; Lee A; Duggan BM; Henriksbo BD; Anhê FF; Ashkar AA; Schertzer JD
    Am J Physiol Endocrinol Metab; 2020 Apr; 318(4):E579-E585. PubMed ID: 32101030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potent and selective RIPK2 inhibitor BI 706039 improves intestinal inflammation in the TRUC mouse model of inflammatory bowel disease.
    Ermann J; Matmusaev M; Haley EK; Braun C; Jost F; Mayer-Wrangowski S; Hsiao P; Ting N; Li L; Terenzio D; Chime J; Lukas S; Patnaude L; Panzenbeck M; Csordas D; Zheng J; Mierz D; Simpson T; King FJ; Klimowicz AP; Mbow ML; Fine JS; Miller CA; Fogal SE; Byrne FR
    Am J Physiol Gastrointest Liver Physiol; 2021 Nov; 321(5):G500-G512. PubMed ID: 34494462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production.
    Nachbur U; Stafford CA; Bankovacki A; Zhan Y; Lindqvist LM; Fiil BK; Khakham Y; Ko HJ; Sandow JJ; Falk H; Holien JK; Chau D; Hildebrand J; Vince JE; Sharp PP; Webb AI; Jackman KA; Mühlen S; Kennedy CL; Lowes KN; Murphy JM; Gyrd-Hansen M; Parker MW; Hartland EL; Lew AM; Huang DC; Lessene G; Silke J
    Nat Commun; 2015 Mar; 6():6442. PubMed ID: 25778803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RIPK2 inhibitors for disease therapy: Current status and perspectives.
    Tian E; Zhou C; Quan S; Su C; Zhang G; Yu Q; Li J; Zhang J
    Eur J Med Chem; 2023 Nov; 259():115683. PubMed ID: 37531744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Novel Protein Kinase Receptor Type 2 Inhibitors Using Pharmacophore and Structure-Based Virtual Screening.
    Cruz JV; Neto MFA; Silva LB; da S Ramos R; da S Costa J; Brasil DSB; Lobato CC; da Costa GV; Bittencourt JAHM; da Silva CHTP; Leite FHA; Santos CBR
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29463017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor Interacting Ser/Thr-Protein Kinase 2 as a New Therapeutic Target.
    Rivoal M; Dubuquoy L; Millet R; Leleu-Chavain N
    J Med Chem; 2023 Nov; 66(21):14391-14410. PubMed ID: 37857324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and Characterization of Novel Receptor-Interacting Serine/Threonine-Protein Kinase 2 Inhibitors Using Structural Similarity Analysis.
    Salla M; Aguayo-Ortiz R; Danmaliki GI; Zare A; Said A; Moore J; Pandya V; Manaloor R; Fong S; Blankstein AR; Gibson SB; Garcia LR; Meier P; Bhullar KS; Hubbard BP; Fiteh Y; Vliagoftis H; Goping IS; Brocks D; Hwang P; Velázquez-Martínez CA; Baksh S
    J Pharmacol Exp Ther; 2018 May; 365(2):354-367. PubMed ID: 29555876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RIPK2 Dictates Insulin Responses to Tyrosine Kinase Inhibitors in Obese Male Mice.
    Duggan BM; Cavallari JF; Foley KP; Barra NG; Schertzer JD
    Endocrinology; 2020 Aug; 161(8):. PubMed ID: 32473019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription of NOD1 and NOD2 and their interaction with CARD9 and RIPK2 in IFN signaling in a perciform fish, the Chinese perch,
    Peng XY; Wang KL; Li L; Li B; Wu XY; Zhang ZW; Li N; Liu LH; Nie P; Chen SN
    Front Immunol; 2024; 15():1374368. PubMed ID: 38715616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergence of innate immunity and insulin resistance as evidenced by increased nucleotide oligomerization domain (NOD) expression and signaling in monocytes from patients with type 2 diabetes.
    Shiny A; Regin B; Balachandar V; Gokulakrishnan K; Mohan V; Babu S; Balasubramanyam M
    Cytokine; 2013 Nov; 64(2):564-70. PubMed ID: 24018334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo inhibition of RIPK2 kinase alleviates inflammatory disease.
    Tigno-Aranjuez JT; Benderitter P; Rombouts F; Deroose F; Bai X; Mattioli B; Cominelli F; Pizarro TT; Hoflack J; Abbott DW
    J Biol Chem; 2014 Oct; 289(43):29651-64. PubMed ID: 25213858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis and evaluation of novel thieno[2,3d]pyrimidine derivatives as potent and specific RIPK2 inhibitors.
    Misehe M; Šála M; Matoušová M; Hercík K; Kocek H; Chalupská D; Chaloupecká E; Hájek M; Boura E; Mertlíková-Kaiserová H; Nencka R
    Bioorg Med Chem Lett; 2024 Jan; 97():129567. PubMed ID: 38008339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.