These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. A Veritable Zoology of Successive Phase Transitions in the Asymmetric Chmiel A; Sienkiewicz J; Fronczak A; Fronczak P Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286787 [TBL] [Abstract][Full Text] [Related]
24. Fragmentation transitions in a coevolving nonlinear voter model. Min B; Miguel MS Sci Rep; 2017 Oct; 7(1):12864. PubMed ID: 28993664 [TBL] [Abstract][Full Text] [Related]
25. Universality of opinions disappearing in sociophysical models of opinion dynamics: From initial multitude of opinions to ultimate consensus. Wołoszyn M; Masłyk T; Pająk S; Malarz K Chaos; 2024 Jun; 34(6):. PubMed ID: 38829792 [TBL] [Abstract][Full Text] [Related]
26. Symmetrical threshold model with independence on random graphs. Nowak B; Sznajd-Weron K Phys Rev E; 2020 May; 101(5-1):052316. PubMed ID: 32575267 [TBL] [Abstract][Full Text] [Related]
27. Dynamical properties of the herding voter model with and without noise. Rozanova L; Boguñá M Phys Rev E; 2017 Jul; 96(1-1):012310. PubMed ID: 29347203 [TBL] [Abstract][Full Text] [Related]
28. Zealots tame oscillations in the spatial rock-paper-scissors game. Szolnoki A; Perc M Phys Rev E; 2016 Jun; 93(6):062307. PubMed ID: 27415280 [TBL] [Abstract][Full Text] [Related]
29. Is the voter model a model for voters? Fernández-Gracia J; Suchecki K; Ramasco JJ; San Miguel M; Eguíluz VM Phys Rev Lett; 2014 Apr; 112(15):158701. PubMed ID: 24785078 [TBL] [Abstract][Full Text] [Related]
30. Fragmentation transitions in multistate voter models. Böhme GA; Gross T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066117. PubMed ID: 23005172 [TBL] [Abstract][Full Text] [Related]
31. Q-voter model with independence on signed random graphs: Homogeneous approximations. Krawiecki A; Gradowski T Phys Rev E; 2024 Jan; 109(1-1):014302. PubMed ID: 38366489 [TBL] [Abstract][Full Text] [Related]
32. Pair approximation for the noisy threshold q-voter model. Vieira AR; Peralta AF; Toral R; Miguel MS; Anteneodo C Phys Rev E; 2020 May; 101(5-1):052131. PubMed ID: 32575340 [TBL] [Abstract][Full Text] [Related]
34. Interacting opinion and disease dynamics in multiplex networks: Discontinuous phase transition and nonmonotonic consensus times. Velásquez-Rojas F; Vazquez F Phys Rev E; 2017 May; 95(5-1):052315. PubMed ID: 28618582 [TBL] [Abstract][Full Text] [Related]
35. Phase transition and power-law coarsening in an Ising-doped voter model. Lipowski A; Lipowska D; Ferreira AL Phys Rev E; 2017 Sep; 96(3-1):032145. PubMed ID: 29346944 [TBL] [Abstract][Full Text] [Related]
36. Noisy voter model: Explicit expressions for finite system size. Perachia F; Román P; Menchón SA Phys Rev E; 2022 Nov; 106(5-1):054155. PubMed ID: 36559421 [TBL] [Abstract][Full Text] [Related]
37. Shannon information criterion for low-high diversity transition in Moran and voter models. Franco GD; Marquitti FMD; Fernandes LD; Braha D; de Aguiar MAM Phys Rev E; 2021 Aug; 104(2-1):024315. PubMed ID: 34525569 [TBL] [Abstract][Full Text] [Related]
38. Mean-field-like behavior of the generalized voter-model-class kinetic Ising model. Krause SM; Böttcher P; Bornholdt S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031126. PubMed ID: 22587057 [TBL] [Abstract][Full Text] [Related]
39. Consensus and clustering in opinion formation on networks. Bujalski J; Dwyer G; Kapitula T; Le QN; Malvai H; Rosenthal-Kay J; Ruiter J Philos Trans A Math Phys Eng Sci; 2018 Apr; 376(2117):. PubMed ID: 29507171 [TBL] [Abstract][Full Text] [Related]